
SIP Troubleshooting #ONE
W O R K S H O P

Written and Presented by:

Alexandr Dubovikov & Lorenzo Mangani
HOMER Development Team

http://sipcapture.org

Workshop Sponsored by QXIP / NTOP - http://qxip.net

http://sipcapture.org
http://sipcapture.org

SIP Troubleshooting #ONE
W O R K S H O P

Lorenzo Mangani
Sr. Voice Engineer and Designer for the largest international cable operator worldwide, founder of Amsterdam
based QXIP BV, Co-Founder and Developer of Homer SIP Capture project and voice specialist of the NTOP Team.
Formerly a Sound Engineer, Lorenzo has been deeply involved with telecommunications and VoIP for well over a
decade and has contributed ideas, design concepts and code to many voice-related Open-Source and commercial
projects specializing in active and passive monitoring solutions.

Alexandr Dubovikov
Senior Voice Expert for QSC AG, one of the major German voice and data providers. Alexandr holds a diploma in
physics of Odessa State University and brings 20 years of experience in telecommunication techniques,
contributing to many Open Source projects like FreeSwitch, SER, Kamailio, SEMS, Asterisk, SIPp, Wireshark.
Alexandr is the main developer of Homer SIP Capture project. Also founder of IRC RusNet Network, one of the
biggest national IRC networks in the world.

Who are we?
meet the SIPCAPTURE Development Team!

 proud makers of

Joseph Jackson
Sr. Network Engineer for VoIP Long Distance wholesale provider. Specializing in high performance and redundant
network design with a special interest in high speed packet capturing and analysis. Focusing on providing real time
VoIP metrics.

http://www.qxip.net/
http://www.sipcapture.org/
http://www.sipcapture.org/

Who are you?

In order to adapt the speed and phasing of this workshop to a fair median we would like to quickly scope our audience

(please raise your hand when a matching group is mentioned)

Voice Pal Works with SIP occasionally and/or deals with other aspects of the network/business

Voice OP Works with SIP daily, dealing with real cases/solutions practicing deep commandline-fu

Voice Dev Works with SIP all day, leads or contributes to several Voice related projects all night

SIP Troubleshooting #1: Toolset in 30 minutes
with Team SIPCapture

We all know it - SIP is an ASCII/UTF-8 application-layer control protocol defined by RFC3261 that can initiate, modify and terminate sessions,
presenting a wide variety of header fields, often carrying additional body data such as SDP used to allow RFC3550 endpoint RTP
communication.

If you work with SIP & RTP you know they can bring both tears of joy and pain - on the other hand, we would be jobless if it all was perfect ;)

This brief workshop will attempt to cover:

● tools of the trade to get the job done from the "one-off" session to permanent capture setups
● technical approaches and quick recipes for capturing SIP/RTP network packets in all weather conditions
● relevant community references, useful resources, ideas and links
● tools we ourselves developed to make your voice life a little easier

This workshop will unfortunately not cover:

● how to master SIP Protocol and its every RFC in less than 30 minutes w/ free drinks
● how to read packet captures blindfolded and complete SIP investigations using sniffer dogs
● techniques for capturing and decoding audio streams using the power of your mind and arduino

NOTE: Several Tools and Tool Suites will be referenced during this workshop, while most of them are freely available and/or fully Open-Source
we decided to also mention and compare the features of some relevant commercial solutions suited as companions or extension to Open-
Source components for completeness of analysis of the options in the higher end of the scope and for those in need of them. The choice is
yours!

SIP Troubleshooting

INTRODUCTION
Battlefield Hardline: VoIP

Introduction
VoIP Breakdown of Typical Areas of Investigation

Although issues with SIP setups can manifest themselves in many forms and shapes, the
vast majority of them can be covered by investigating the following critical areas:

- INTEROPERABILITY ISSUES
○ Different vendors of semi compatible "standard" solutions
○ Different Interpretations and Implementations of RFCs and Standards in UAs
○ Misconfiguration of remote party/interconnect (the hardest to prove and argue)

- NEGOTIATION ISSUES
○ No common codecs or rates (ptime), DTMF transport/tone mismatch
○ No network path, NAT Detection and resolve Issues. (Vendor: A)
○ SDP from hell (Vendor: C) multiple Via: 127.0.0.1

- SYSTEM PERFORMANCE ISSUES
○ Stressed or Misconfigured Hardware/Software on either side of the call
○ Overloaded Transcoders, Gateways, etc.
○ Attacks/Scanning/DDOS attacks overloading voice sub-systems

- NETWORK & NETWORK PERFORMANCE
○ Routing Issues, NAT Issues, SIP ALG Issues
○ Latency, Jitter and UDP Packet Loss in transit

- OSI-8 ERROR
○ Dial Errors, Broken Handsets, Broken B-Party Handset, Broken Ears

NEXT: How do we get to the juicy protocols out?

Introduction
VoIP Ecosystem and Elements

This workshop assumes basic familiarity with the standard elements and protocols
typically involved with SIP Services and their roles. Beyond their implicit functional
differences each system can produce plenty of valuable information and useful details:

Some Examples:

- SIP USER-AGENT, SBC / B2BUA, SSW
○ SIP, RTP, RTCP, CDRs, QoS Metrics, Application Logs

- SIP PROXY, REGISTRAR, ROUTER
○ SIP, Database & Application Logs

- MIRRORED ROUTER/SWITCH Ports
○ SIP, RTP, RTCP protocol traffic to/from peering networks

- OSI-8 / END-USER
○ Usage Logs, Issue Timestamps, Ultra Mean Opinion Score

CAPTURING THE PACKETS
PHYSICAL METHODS

SPAN / MIRROR PORT
Traditional method of capturing data

PRO:

Widely support on almost any “managed switch” even small work group switches.

Easy to use.

Bidirectional traffic flows.

Many to one (depending on hardware).

CON:

Dumb capturing - no control of traffic selection.

Packet loss on over subscribed destination port.

Bad or corrupted packets are not transmitted.

CAPTURING THE PACKETS
PHYSICAL METHODS

Granular Packet Capturing.
Vendor dependant and platform dependant.

Cisco:

Vlan Access Control List (VACL)

Mark interesting traffic and only have that sent to capture port, rest of traffic is
forwarded as normal

VLAN based - if all your devices are in the same vlan you won’t see intra vlan traffic.

Platform dependant - Catalyst 6500 and the Nexxus

Flow-based SPAN alt to VACL on Catalyst X Series.

Juniper:

Much more robust capturing.

Using Firewall filters can mark interesting traffic and forward to capture port.

Depending on model (SRX) can drop to linux OS and run tcpdump.

CAPTURING THE PACKETS
PHYSICAL METHODS

Network Taps
Active Taps:

Intelligent - able to identify traffic based on layers 3-7 and send to capture device.

Pros: Intelligent and programmable.

Cons: Epensive

Passive Taps:

Dumb tap. All traffic is replicated to the capture ports.

Pros: Cheap!

Cons: Super dumb

Remember never plug a TX into a capture port on an optical tap

SIP Troubleshooting

REAL-TIME CAPTURE TOOLS
Terminal Heroes

Standard Tools
The ABC of packet capturing

“Everybody lies, but not SIP “ Doctor House

Let's face it - If the packets we need are not available for us to investigate when we need them, we're in trouble.

Regardless of the title or experience, a good voice engineer should be prepared to do whatever the conditions dictate
to capture voice packets needed to get the job done. Sometimes we own the systems and can pick our fancy weapons,
other times we are bound to strict limitations - you simply never know - this is why the ABC really never gets too old.

Amongst the "evergreen" packet capture tools every voice op should know and use, we will briefly mention:

tcpdump, wireshark, tshark, ngrep, sipgrep, sngrep, pcapsipdump, captagent

Several of the above will offer overlapping features and/or equivalents to perform similar actions - this is great news for
any voice generalist, as you never know which default tools will be found waiting for you on an impaired alien system.

NEXT: Let's see a few everyone should be familiar with...

Standard Tools
The old school ways: 8 bits games, tcpdump

Let's assume everyone knows tcpdump, the grandfather of packet capture tools and highlander of any unix system.
tcpdump familiarity is definitely not an optional - when everything else fails, this good old friend won't let you down.

Capturing SIP Packets with tcpdump:

Display SIP packets with verbose details:
tcpdump -nqt -s 0 -A -vvv -i eth0 port 5060

Capture SIP packets to disk in PCAP format:
tcpdump -nq -s 0 -i eth0 -w /tmp/dump.pcap port 5060

Capture SIP packets to disk in PCAP format, rotate file every 15mb w/ file timestamp:
tcpdump -s 0 -w /tmp/capture-dep`date +%Y%m%d-%H%M%Z`.pcap -C15 udp and port 5060

NOTES:

-s 0
Setting snaplen to 0 sets
it to the default of 65535

-n
Do not convert addresses
to names.

-i
Input capture interface

-w
Output PCAP filename

Standard Tools
The old school ways: 16 bits games, tshark

TShark is a network protocol analyzer part of the wireshark family. It lets you capture packet data from a live network, or read
packets from a previously saved capture file, either printing a decoded form of those packets to the standard output or writing the
packets to a file delivering the power of wireshark filtering alongside many advanced functions including RTP heuristics.

Capturing Packets with Tshark:

Capture all SIP on specified port and switch files every hour:
tshark -nq -i eth0 -b duration:3600 -w /tmp/trace/sip.pcap port 5080

Extract SIP Server/Client details from INVITEs:
tshark -r myFile -R "sip.CSeq.method eq INVITE"

Capture SIP, RTP, ICMP, DNS, RTCP, and T38 traffic in a ring buffer capturing 100 50MB files continuously:
tshark -i eth0 -o "rtp.heuristic_rtp: TRUE" -w /tmp/capture.pcap -b filesize:51200 -b files:100 -R 'sip or

 rtp or icmp or dns or rtcp or t38'

Filter on RTCP packets reporting any packet loss or jitter over 30ms:
tshark -i eth0 -o "rtp.heuristic_rtp: TRUE" -R 'rtcp.ssrc.fraction >= 1 or rtcp.ssrc.jitter >= 240' -V

Analyze RTP Network Stream Quality by portrange:
tshark -q -f 'udp portrange 20000-30000' -o rtp.heuristic_rtp:TRUE -z rtp,streams
 Src IP addr Port Dest IP addr Port SSRC Payload Pkts Lost Max Delta(ms) Max Jitter(ms) Mean Jitter(ms)
 10.1.3.143 5000 10.1.6.18 2006 0xDEE0EE8F G.711 PCMA 236 0 (0.0%) 34.83 0.83 0.37

Standard Tools
The old school ways: Remote Captures

There are occasions where you might need to capture key packets on a remote system and analyze them locally.
To avoid the trouble of saving and transferring pcap files, native linux options might come handy and apply fine to
severals of our available tools:

Capturing Packets Remotely:

Capture remote traffic to local pcap with tcpdump:

ssh root@host 'tcpdump -w - -p -n -s 0 port 5060 and host 1.2.3.4' > remote_capture.cap

Analyze a remote real-time capture stream using a local wireshark over ssh:

wireshark -k -i <(ssh -l root 192.168.10.20 tshark -w - not tcp port 22)

Capture from remote system via named pipe, display using sipgrep and forward to HEP Collector:

mkfifo /tmp/pcap

ssh root@192.168.10.20 "tcpdump -s 0 -U -n -w - -i any portrange 5060-5090" > /tmp/pcap

sipgrep -I /tmp/pcap -H udp:192.168.50.60:9060

http://172.30.52.237:9060/

Standard Tools
Decoding and Analyzing SIP TLS packet captures with Wireshark
The world is finally catching up with Encryption - this is great news for end users but can result in complications for voice ops. Unless you are
capturing traffic from within your VoIP platform (using an internal capture agent) you might have to deal with troubleshooting TLS sessions.

Wireshark can decode SSL/TLS sessions when the following conditions are fulfilled:

■ the private key of the TLS server is known (both keys might be needed if mutual TLS (=client certificate) is used)
■ the TLS connections does not use a Diffie-Hellman cipher
■ Wireshark captures the TLS session from the beginning (including handshake)

Configure Wireshark to decode SSL/TLS:

■ Copy the server's private key to the PC running Wireshark. Configure Wireshark to use the key:
■ Edit → Preferences → Protocols → SSL → RSA Keys List: i.e.: ip.address.of.server,5061,sip,/opt/ssl/agent.pem
■ If the server uses Diffie-Hellman (DH) Ciphers by default you should configure the server to use other ciphers.

TSHARK EXAMPLE:

tshark -o "ssl.desegment_ssl_records: TRUE" \

 -o "ssl.desegment_ssl_application_data: TRUE" \

 -o "ssl.keys_list: 4.2.2.2,5061,sip,/opt/ssl/agent.pem" \

 -o "ssl.debug_file:/tmp/tshark.log" \

 -i eth0 \

 -f "tcp port 5061"

WIRESHARK EXAMPLE:

wireshark -o "ssl.desegment_ssl_records: TRUE" \

 -o "ssl.desegment_ssl_application_data: TRUE" \

 -o "ssl.keys_list: 4.2.2.2,5061,sip,/opt/ssl/agent.pem" \

 -o "ssl.debug_file: /tmp/wireshark.log" \

 -i eth0 -f "tcp port 5061"

Information courtesy of FreeSwitch and Kamailio/SER communities

SIP Troubleshooting

REAL-TIME CAPTURE TOOLS
Terminal Heroes pt II

PCAPSIPDUMP
The old school ways: Dumping SIP Sessions to PCAP files

pcapsipdump is a console tool for dumping SIP sessions and RTP packets (only when available) to disk in a fashion similar to
"tcpdump -w" by creating a single PCAP per each detected SIP session with optional number filters, for later analysis.

This old-school tool can still be useful for "one-off" activities and to temporarily monitor/intercept traffic, but clearly introduces a
growing level of complexity when analyzing numerous results over long time ranges or when dealing with busy networks alone.

Capture from eth0 and store all SIP sessions in /tmp/

pcapsipdump -i eth0 -d /tmp/

pcapsipdump version 0.1.4-trunk
Usage: pcapsipdump [-fpU] [-i <interface>] [-r <file>] [-d <working directory>] [-v level]
 -f Do not fork or detach from controlling terminal.
 -p Do not put the interface into promiscuous mode.
 -U Make .pcap files writing 'packet-buffered' - slower method,
 but you can use partitially written file anytime, it will be consistent.
 -v Set verbosity level (higher is more verbose).
 -n Number-filter. Only calls to/from specified number will be recorded
 -t T.38-filter. Only calls, containing T.38 payload indicated in SDP will be recorded

PCAPSIPDUMP: http://sourceforge.net/projects/pcapsipdump/

http://sourceforge.net/projects/pcapsipdump/

SIPGREP2

CLI Usage and Features (add images)

Sipgrep2 is a modern pcap-aware tool command line tool to capture, filter, display and help troubleshoot SIP signaling over IP
networks, allowing the user to specify extended regular expressions matching against SIP headers and with nifty extra features.

Some Handy Examples:

Find a dialog there From user contains '2323232'
sipgrep -f 2323232

Find a dialog there To user contains '1111' and print dialog
report
sipgrep -f 1111 -G

Display only 603 replies without dialog match
sipgrep '^SIP/2.0 603' -m

Display only OPTIONS and NOTIFY requests
sipgrep '^(OPTIONS|NOTIFY)'

Display only SUBSCRIBE dialog
sipgrep 'CSeq:\s?\d* (SUBSCRIBE|PUBLISH|NOTIFY)' -M

Collect all messages while pcap_dump smaller than 20kb
sipgrep -q 'filesize:20' -O sipgrep.pcap

SIPGREP: https://github.com/sipcapture/sipgrep

https://github.com/sipcapture/sipgrep

SIPGREP2

CLI Usage and Features

More Handy Examples:

Kill friendly-scanner automatically
sipgrep -J

Kill friendly-scanner with custom UAC name
sipgrep -j sipvicious

Collect all Calls/Registrations dialogs during 120
seconds, print reports and exit:
sipgrep -g -G -q 'duration:120'

Split pcap_dump to 20 KB files in sipgrep_INDEX_YYYYMMDDHHMM.
pcap
sipgrep -Q 'filesize:20' -O sipgrep.pcap

Split pcap_dump in sipgrep_INDEX_YYYYMMDDHHMM.pcap each 120
seconds
sipgrep -Q 'duration:120' -O sipgrep.pcap

Sipgrep packages are available natively on Debian SID:

https://packages.debian.org/sid/sipgrep

SNGREP by Kaian/irontec

Troubleshooting SIP sessions in the terminal… HEP included!

sngrep is a great tool for displaying SIP calls message flows from a terminal, exporting HEP3
packets to a HOMER instance and great for watching traffic over multiple local views:

● Call List Window: Allows to select the calls to be displayed
● Call Flow Window: Shows a diagram of source and destiny of messages
● Call Raw Window: Display SIP messages texts
● Message Diff Window: Displays differences between two SIP messages

Display SIP packets from a PCAP file using filters

sngrep -I file.pcap host 192.168.1.1 and port 5060

Display Live packets, save to a new PCAP file

sngrep -d eth0 -O save.pcap port 5060 and udp

Export HEP3 Encapsulated packets to HOMER (eep.send)

sngrep -H -d eth0 port 5060 and udp

SNGREP: https://github.com/irontec/sngrep

https://github.com/irontec/sngrep/wiki/CallList
https://github.com/irontec/sngrep/wiki/CallList
https://github.com/irontec/sngrep/wiki/CallFlow
https://github.com/irontec/sngrep/wiki/CallFlow
https://github.com/irontec/sngrep/wiki/CallRaw
https://github.com/irontec/sngrep/wiki/CallRaw
https://github.com/irontec/sngrep/wiki/CallRaw
https://github.com/irontec/sngrep/wiki/MessageDiff
https://github.com/irontec/sngrep/wiki/MessageDiff
https://github.com/irontec/sngrep

SIP Troubleshooting

CENTRALIZED SOLUTIONS
Capture Servers & Long-Term Storage

Centralized Capture Systems
Voice Packets echoing from the Past!

Jitter
Packet Loss
Round-Trip-Time
Codec, Bitrate

SIP Signaling
Logs
CDRs

Homer/HEP Example Diagram

Centralized Capture Systems are generally designed for voice
network operators, providers and ITSPs in need of permanent
monitoring and troubleshooting resources for their Voice and
Customer support and engineering teams on a daily basis and
provides key features to protect and maximize voice products and
accurately measure infrastructure or peering investments.

Several commercial and a few free options are available on the
market covering this key role, each focusing on different areas but
sharing some common advantages:

Key Benefits:

● system/platform agnostic capture viewpoint
● permanent monitoring of service resources
● instant troubleshooting present and past events
● long-term storage of signaling and usage metrics

User Benefits:

● accelerate access to aggregated information
● reduce initial investigation complexity
● reduce unsecured user access to key resources
● empower teamwork in case handling

SIP Troubleshooting

CENTRALIZED SOLUTIONS
HOMER + SIPCAPTURE

Proudly Introducing

HOMER 5

SIPCAPTURE
New to our Projects?

SIPCAPTURE is a powerful suite of tools enabling Voice Engineers to
focus on their actual job without having to spend hours figuring how to
get the data they need to work with on each instance. Our flagship
product HOMER is a self-contained SIP Analysis and Troubleshooting
environment fully customizable based on the preferences of its users:

HOMER is a turnkey solution providing many advantages:

● Instant centralized access to present and past signaling & stats
● Full SIP/SDP payload with precise timestamping
● Automatic correlation of sessions and reports
● Visual representation of multi session call-flows
● Fast detection of usage and system anomalies
● System agnostic view of VoIP traffic flows
● Unlimited plug & play capture agents and HEP data feeds
● Easy data integration with other systems via API
● No Desktop/Mobile client software required
● Ease of installation (no more 1st setup headaches!)

HOMER: http://github.com/sipcapture/homer

scan

scan

http://github.com/sipcapture/homer

HOMER 5
What's New in Homer 5 UI?

HOMER 5 brings many core improvements and module extensions to
handle so much more than just signaling, and delivers a complete
overhaul of the web User-Interface component migrating to modern JS
framework while retaining the simplicity and style many users
worldwide rely upon daily.

HOMER's Main Features:

● 100% HTML5 & API Based User Interface
● No Defaults! All Pages and Dashboards fully customizable
● Multiple DB options (MySQL/MariaDB, PSQL, ElasticS, InfluxDB …)

● Modern & Extensible Angular Drag & Drop UI
● User Customizable Widgets for Charts & Analytics
● Powerful SIP Search and Filtering functionality
● Native Canvas Call-Flow display with multi-session correlation
● Native support for PCAP and Text file export of all results
● Supports token Authentication for API and User Interface
● Multi-User support with Local, LDAP, Radius options
● Production Ready, supports high volumes and PPS rates
● Supported by a strong and growing community

HOMER: http://github.com/sipcapture/homer

http://github.com/sipcapture/homer

HOMER 5: How does it work?
Build your own HOMER Capture Server using SIPCAPTURE modules

HOMER setups requires two basic building blocks:

● CAPTURE SERVER
A Capture Server Collects, Indexes and Stores SIP packets received
from Capture Agents using HEP v1/2/3, SBCs using IPIP or Raw SIP
from Ethernet interfaces and mirrored switch ports, using flexible rules
defined in the powerful, extensible and fully customizable capture plan

○ Requires:OpenSIPS + sipcapture module

● CAPTURE AGENT(s)

A Capture Agent sends encapsulated packets to a Capture Server
using the HEP Encapsulation protocol designed for HOMER

The Capture Agent role can be covered by different elements running
on different platforms or architectures and distributed in a completely
modular fashion, allowing it to support any network topology and
complexity and to easily scale with the monitored architectures, as
displayed in the illustration on the right.

○ Next Slide: what is HEP?

HOMER Capture Server: Capture Plan, Alarms and Statistics configuration

More Examples: https://github.com/sipcapture

####### Packet Capture Logic ########

 if(is_method("INVITE|BYE|CANCEL|UPDATE|ACK|PRACK|REFER"))
 {
 $var(table) = "sip_capture_call";
 }
 else if(is_method("REGISTER"))
 {
 $var(table) = "sip_capture_registration";
 }
 else if(is_method("INFO"))
 {
 $var(table) = "sip_capture_call";
 }
 else if(is_method("OPTIONS"))
 {
 $var(table) = "sip_capture_rest";
 }
 else {
 $var(table) = "sip_capture_rest";
 }

 $var(a) = $var(table) + "_%Y%m%d";

 sip_capture("$var(a)");

####### Alarms & Statistic Parameters #########

if (is_method("INVITE|REGISTER")) {

 if($ua =~ "(friendly-scanner|sipvicious)") {

sql_query("cb", "INSERT INTO alarm_data_mem (create_date, type,

total, source_ip, description) VALUES(NOW(), 'scanner', 1, '$si', 'Friendly

scanner alarm!') ON DUPLICATE KEY UPDATE total=total+1");

route(KILL_VICIOUS);

 }

 #IP Method

sql_query("cb", "INSERT INTO stats_ip_mem (method, source_ip, total)

VALUES('$rm', '$si', 1) ON DUPLICATE KEY UPDATE total=total+1");

 if($au != $null) $var(anumber) = $au;

 else $var(anumber) = $fU;

 #hostname in contact

 if($sel(contact.uri.host) =~ "^(\d{1,3}\.\d{1,3}\.\d{1,3}\.\d{1,3})$") {

 if($sht(a=>alarm::dns) == $null) $sht(a=>alarm::dns) = 0;

 $sht(a=>alarm::dns) = $sht(a=>alarm::dns) + 1;

 }

}

SIPCAPTURE module logic for packet capture, alarms and statistics is completely customizable and extensible with no limits:

https://github.com/sipcapture

HOMER 5: What the HEP is HEP?
HEP = Homer Encapsulation Protocol

HOMER's own Encapsulation protocol (HEP/EEP) is used to wrap and
transfer captured packets between a capture Agent and Server.

The HEP Extensible Encapsulation protocol was designed to provide
an efficient, modular and low -level framework to accurately duplicate
passively obtained IP datagrams for remote collection over
UDP/TCP/SCTP connections, where full retention of original datagram
headers and payload MUST be provided to the collector without
alterations or data loss.

The HEP3/EEP definition includes both generic (internal) and vendor-
specific custom defined chunk types providing ground for implementors
to extend the spectrum of the deliverable data within the HEP protocol
alongside the encapsulated IP datagram.

HOMER currently supports HEP decoding for SIP, XMPP, RTCP,
RTCP-XR and Custom Logs or CDRs in plain text or JSON format.

Find the full specs at: http://github.com/sipcapture/hep

SIP

HEP

http://github.com/sipcapture/hep

HOMER 5
SIP Search Application

HOMER 5
Your new SIP Search Dashboard is ready to use!

Search Control

Custom Form Fields
Search Time Range

HOMER 5
Let's find some SIP traffic next!

Quick Search:

1) Select Time Range
2) Filter any SIP Header
3) Choose Transaction Type
4) Search!

1

2

3

4

HOMER 5
Example: Search Results

Search Result Filtering

Session Call-ID

1 Find the session of interest

HOMER 5
Example: Session Details

Call-Flow & Correlation

Session Details

2 Click a Call-ID to correlate a Session

HOMER 5
Example: Session and Packet Details 3 Click & Inspect any SIP Message

SIP Message Details

HOMER 5
Example: Session and Packet Details

RTCP-XR QoS
Reports

4 Click & Inspect RTCP-XR Reports

HOMER 5
Got Charts?

HOMER 5
Create a Stats Dashboard in seconds

Chart Type Preferences

Chart Query Fields

Query Details

1

2

3

SIPCapture API
Charts

Elasticsearch Histograms

InfluxDB Server Load Elasticsearch L7 Proto Aggs

Elasticsearch Top IP SRC SIPCapture Packet Rate

SIPCapture Method Distrib..

HOMER Capture Server using OpenSIPS: QoS Reports and Logging

More Examples: https://github.com/sipcapture

PUBLISH REPORT

if(is_method("PUBLISH") && has_body("application/vq-rtcpxr"))
{
 $var(table) = "report_capture";
 $var(callid) = $(rb{re.subst,/(.*)CallID:([0-9A-Za-z@-]{5,120})(.*)$/\2/s});

 $var(temp) = $(rb{re.subst,/^(.*)JitterBuffer:(.*)JBN=([0-9]{1,5})(.*)$/\3/s});
 if(float2int("$var(temp)", 1)) $var(jbn) = $rc;

 #Mos
 $var(temp) = $(rb{re.subst,/^(.*)QualityEst:(.*)MOSCQ=([0-9.]{1,4})(.*)$/\3/s});
 if(float2int("$var(temp)", 10)) $var(mos) = $rc;

 statsd_set($var(customer)+"Mos", $var(mos));
 statsd_set($var(customer)+"JBN", $var(jbn));

 #save to db
 report_capture("$var(table)", "$var(callid)");

 drop;
}

RTCP-XR provides a range of VoIP call and network quality
metrics generated by user agents and devices supporting the
protocol. The reports can be very useful to debug the user
quality of a given session and are supported by HOMER.
RTCP-XR packets can be handled in two different ways by a
capture agent:

- STORE Mode
Using HEP proto_id 99 QoS reports are sent to DB

- FORWARD Mode
Using HEP SIP proto_id, QoS reports are forwarded to
kamailio.cfg where users can parse and extract
relevant information for statistical purposes and store
to internal hashmap, Homer DB, or statsd module

HINT: Don't miss our QoS Dangerous Demo!

References:

- RFC 3611 (RTP Control Protocol Extended Reports)
- RFC 6035 (SIP Package for Voice Quality Reporting)

https://github.com/sipcapture

OpenSIPS + flatstore recipe
On-demand, long-term archiving of SIP signaling

This configuration option instructs the sipcapture module to use the flatstore db module which is configured to create all of its files
in the "/db/homer_dat" directory - note such directory must exist and have write permissions for the process user!

modparam("sipcapture", "db_url", "flatstore:/db/homer_data")

Define sip_capture table as:

$var(table) = “sip_capture_%Y%m%d%H%M.flat”

and each hour we start bzip2 inside this table and move to special directory:

find /db/homer_data -type f -name “*.flat” -exec “movefile.sh” {} \;

Flatstore files can be restored to a local mysql DB if and when necessary.
A dedicated node connector can also be defined from Homer's UI and used for searches on demand.

#!/bin/sh

FILE=$1

bzip2 -kv9 $FILE

mv $(FILE).bz2

/db/homer_bzip/

movefile.sh

HEP
Capture Agents

HEP - Homer Encapsulation Protocol
Integrated Capture Agents in OSS Platforms

HOMER's own encapsulation protocol (HEP/EEP) is used to
transfer your packets unmodified and carries several key
information in its headers designed for perfect capturing.

HEP agents have been consistently integrated across leading
OSS solutions - chances are you have one in your fleet already!

The following projects provide integrated HEP support:

● Kamailio
● OpenSIPS
● FreeSWITCH
● Asterisk
● sipXecs

Examples are also provided for the following languages:

● C/C++
● Java
● Javascript / Node.JS
● Erlang
● Go

The HEP/EEP Protocol is defined in a mature Draft pending
submission and is freely available for developers to integrate.

Find more about HEP: http://hep.sipcapture.org/

OpenSIPS Example:

https://github.com/sipcapture/homer/wiki/Examples%3A-OpenSIPS

Kamailio Example:

https://github.com/sipcapture/homer/wiki/Examples%3A-Kamailio

FreeSWITCH Example:

https://github.com/sipcapture/homer/wiki/Examples%3A-FreeSwitch

CaptAgent Example:

https://github.com/sipcapture/homer/wiki/Examples%3A-Captagent4

nProbe VoIP Example:

https://github.com/sipcapture/homer/wiki/Examples%3A-nProbe

ACME SBC Example:

https://github.com/sipcapture/homer/wiki/Examples%3A-ACME-Packet

Other HEP Agents

http://hep.sipcapture.org/
https://github.com/sipcapture/homer/wiki/Examples%3A-OpenSIPS
https://github.com/sipcapture/homer/wiki/Examples%3A-OpenSIPS
https://github.com/sipcapture/homer/wiki/Examples%3A-Kamailio
https://github.com/sipcapture/homer/wiki/Examples%3A-Kamailio
https://github.com/sipcapture/homer/wiki/Examples%3A-FreeSwitch
https://github.com/sipcapture/homer/wiki/Examples%3A-FreeSwitch
https://github.com/sipcapture/homer/wiki/Examples%3A-Captagent4
https://github.com/sipcapture/homer/wiki/Examples%3A-Captagent4
https://github.com/sipcapture/homer/wiki/Examples%3A-nProbe
https://github.com/sipcapture/homer/wiki/Examples%3A-nProbe
https://github.com/sipcapture/homer/wiki/Examples%3A-ACME-Packet
https://github.com/sipcapture/homer/wiki/Examples%3A-ACME-Packet

CAPTAGENT 6
Modular Capture Agent w/ HEP3 Support

Captagent started as a SIP-only capture agent for HOMER.
The codebase over time has been completely redesigned from the
ground up to follow the evolution of the HEP protocol and
Captagent grew to become a powerful, flexible, completely
modular capture agent framework ready for virtually any kind of
protocol and encapsulation method, past, present - and future.
Currently available modules:

● UNI Proto Module
○ SIP, XMPP and other text signaling Protocols

● RTCP Module
○ RTCP and RTCP-XR Parser and Collector

● CLI Module
○ CLI Shell Access and control of Captagent

● HEP Module
○ HEP Encapsulation output (v1/2/3)

● SSL/TLS Module
○ Encryption and Compression Module for HEP3

Upcoming modules:

● Remote API Module
○ Configure and Control a feet of Captagents from a Central server

 CAPTAGENT: https://github.com/sipcapture/captagent

<!-- CORE MODULES -->

 <configuration name="core_hep.conf" description="HEP Socket">
 <settings>
 <param name="version" value="3"/>
 <param name="capture-host" value="capture.server.org"/>
 <param name="capture-port" value="9060"/>
 <param name="capture-proto" value="udp"/>
 <param name="capture-id" value="2001"/>
 <param name="capture-password" value="myHep"/>
 <param name="payload-compression" value="false" />
 </settings>
 </configuration>

<!-- PROTOCOLS -->

 <configuration name="proto_uni.conf" description="UNI Proto Basic
capture">
 <settings>
 <param name="port" value="5060"/>
 <!-- <param name="portrange" value="5060-5090"/> -->
 <!--
 use -D flag for pcap import
 use "any" for all interfaces in your system
 -->
 <param name="dev" value="eth0"/>
 <param name="promisc" value="true"/>
 <!-- comment it if you want to see all IPProto (tcp/udp) -->
 <param name="ip-proto" value="udp"/>
 <param name="proto-type" value="sip"/>
 <!-- <param name="filter" value="not src port 5099"/> -->
 </settings>
 </configuration>

https://github.com/sipcapture/captagent

Example: Captagent 6 programming

More Examples: https://github.com/sipcapture

Information courtesy of Homer and SER communities

<module name="socket_pcap" description="HEP Socket" serial="2014010402">
 <profile name="socketspcap_sip" description="HEP Socket" enable="true"
serial="2014010402">
 <settings>
 <param name="dev" value="any"/>
 <param name="promisc" value="true"/>
 <param name="reasm" value="false"/>
 <param name="capture-plan" value="sip_capture_plan.cfg"/>
 <param name="filter">
 <value>portrange 5060-5091</value>
 </param>
 </settings>
</profile>
<profile name="socketspcap_rtcp" description="RTCP Socket" enable="true"
serial="2014010402">
 <settings>
 <param name="dev" value="any"/>
 <param name="promisc" value="true"/>
 <param name="reasm" value="false"/>
 <param name="capture-plan" value="rtcp_capture_plan.cfg"/>
 <param name="filter">
 <value>portrange 30000-50000</value>
 </param>
 </settings>
</profile>
</module>

#sip_capture_plan.cfg
capture[pcap] {

 # here we can check source/destination IP/port, message size
 if(msg_check("size", "100")) {

 #Do parsing
 while(parse_sip()) {

 /* many packets */
 clog("NOTICE", "parsing SIP message ");

 if(source_ip(“10.0.0.1”)) {
#Can be defined many profiles in transport_hep.xml

 if(!send_hep("hepsocket_homer01")) {
 clog("ERROR", "Error sending HEP!!!!");

 }
 }
 else {
 #Can be defined many profiles in transport_hep.xml

 if(!send_hep("hepsocket_homer02")) {
 clog("ERROR", "Error sending HEP!!!!");

 }
 }

 #Duplicate all INVITEs to JSON transport
 if(sip_is_method() && sip_check("method","INVITE")) {

 #Can be defined many profiles in transport_json.xml
 if(!send_json("jsonsocket")) {
 clog("ERROR", "Error sending JSON");
 }
 }
 }
 }
 drop;
}

https://github.com/sipcapture

SIPGREP2

Sipgrep as disposable HEP3 Agent

Sipgrep is able to act as a quick on-demand HEP3 capture
agent and forward packets to a collector very easily when a
simple terminal check does not suffice.

In the following example, Sipgrep is used to display the
traffic of interest as well as log it to a remote location, useful
for instance when troubleshooting issues on hosted
platforms or disposable instances on the cloud.

HEP3 Example:

Display dialogs and duplicate all traffic to HOMER
sipcapture in HEPv3:

sipgrep -f 23333 -H udp:10.0.0.1:9061

sipgrep -f 23333 -H
udp:10.0.0.1:9061

NPROBE SIP Mirroring
Capture & Mirror SIP Signaling using nProbe/nVoice SIP Plugin

NTOP nProbe (w/ VoiP PRO Plugin) can act as HEP3 capture agent for
SIP Protocol mirroring to a centralized collector such as Homer and can
perform this task at high packet rates. The HEP3 features are simply
controlled by the following switches:

 --hep <host>:<port> | Send JSON flows via HEPv3 protocol
 --hep-auth <capture id>:<password> | Specify the HEP authentication parameters.

Example HEP3 SIP Syntax:

nprobe -T "%SIP_CALL_ID" --drop-flow-no-plugin -i eth0 --
hep 10.0.10.20:9063 --hep-auth 10:myhep123 -b 0 -G

NTOP nProbe SIP Plugin can also send out its SIP detections via JSON, NetFlow, or
dump logs locally for server-less, ad-hoc implementations or simple batch processing:

 --sip-dump-dir <dump dir> | Directory where SIP logs will be dumped
 --sip-exec-cmd <cmd> | Command executed whenever a directory has been dumped

NPROBE VoIP: http://ntop.org

%SIP_CALL_ID SIP call-id

%SIP_CALLING_PARTY SIP Call initiator

%SIP_CALLED_PARTY SIP Called party

%SIP_RTP_CODECS SIP RTP codecs

%SIP_INVITE_TIME SIP time (epoch) of INVITE

%SIP_TRYING_TIME SIP time (epoch) of Trying

%SIP_RINGING_TIME SIP time (epoch) of RINGING

%SIP_INVITE_OK_TIME SIP time (epoch) of INVITE OK

%SIP_INVITE_FAILURE_TIME SIP time (epoch) of INVITE FAILURE

%SIP_BYE_TIME SIP time (epoch) of BYE

%SIP_BYE_OK_TIME SIP time (epoch) of BYE OK

%SIP_CANCEL_TIME SIP time (epoch) of CANCEL

%SIP_CANCEL_OK_TIME SIP time (epoch) of CANCEL OK

%SIP_RTP_IPV4_SRC_ADDR SIP RTP stream source IP

%SIP_RTP_L4_SRC_PORT SIP RTP stream source port

%SIP_RTP_IPV4_DST_ADDR SIP RTP stream dest IP

%SIP_RTP_L4_DST_PORT SIP RTP stream dest port

%SIP_RESPONSE_CODE SIP failure response code

%SIP_REASON_CAUSE SIP Cancel/Bye/Failure reason cause

%SIP_C_IP SIP C IP adresses

%SIP_CALL_STATE SIP Call State

http://10.20.2.58:9063/
http://ntop.org

SIP Troubleshooting

MEDIA QUALITY STATISTICS
RTP & RTCP Analysis

RTP Statistics
Network and Media quality probing using RTP, RTCP, RTCP-XR, RTP Reports...

In order to capture, investigate and analyze media stream quality and network issue, we need to interact with the protocols
involved with transmission, controlling and reporting of media streams - We should all all be familiar with the following:

RTP (Real-time Transport Protocol)
The aim of RTP is to provide a uniform means of transmitting data subject to real time constraints over IP (audio, video, etc.). The principal role of
RTP is to implement the sequence numbers of IP packets to reform voice or video information even if the underlying network changes the order of
the packets. More generally, RTP makes it possible to: identify the type of information carried, add temporary markers and sequence numbers to the
information carried, monitor the packets' arrival at the destination. RTP works over UDP and its header carries synchronization and numbering
information such as sequence number, timestamp and unique identifier for the source.

RTCP (Real-time Transport Control Protocol)
RTCP is a protocol associated with RTP based on periodic transmissions of control packets by all participants in the session and used provide
different types of information and a return regarding the quality of reception.

RTCP-XR (Real-time Transport Control Protocol Extended Reports)
Extended Report (XR) packet type for the RTP Control Protocol (RTCP) are used to convey information beyond what is already contained in the
reception report blocks of RTCP sender report (SR) or Receiver Report (RR) packets, such as internal statistics about the stream quality and
network conditions encapsulated in various types of SIP PUBLISH/OPTIONS reports sent by enabled endpoints during and after a call session.

X-RTP-Stats, P-RTP-Stat (User Agent generated End of Call Statistics)
The Reporting of End-of-Call QoS Statistics in Session Initiation Protocol (SIP) BYE Message feature enabled user-agents to send quality statistics
to a remote end when a call terminates. The call statistics are sent as a new header included in the BYE message or in the 200 OK response, and
include Real-time Transport Protocol (RTP) packets sent or received, total bytes sent or received, total number of packets that are lost, delay jitter,
round-trip delay, call duration and more, providing the endpoint view over the call performance.

RTCP-XR Statistics
CaptAgent as RTCP-XR Collector or Reporter

How can we use RTCP-XR to troubleshoot call quality?

CaptAgent 6 features a powerful RTCP-XR collector module.

RTCP-XR enabled User-Agents (Snom, Cisco, Polycom, etc) can directly
use captagent as a quality report collector. The dedicated module will
forward an HEP encapsulated RTCP-XR report to your capture server (such
as Homer or PCapture) for later analysis and correlation with the call
sessions they belong with and indexed for general statistical purposes.

Captagent can also collect raw RTCP packets and send them as HEP3 or
JSON/RAW format to a capture server and can also optionally generate and
transmit final RTCP-XR reports (CallTerm) including RTP statistics
generated for the call duration including Jitter, Delay, Packet Loss and so
on, performing an RTCP-> RTCP-XR format adaption/conversion

PUBLISH SIP/2.0

From: <sip:446@intern.snom.de>;tag=45hkui59ns

To: <intern.snom.de>;tag=nohhk4xu21

Call-ID: 3c26a8de500f-12ct7zov3kjs

CSeq: 3 PUBLISH

Max-Forwards: 70

Contact: <sip:446@192.168.5.251:2060;transport=tls;line=w2wuvhk9>;reg-id=1

Event: vq-rtcpxr

Accept: application/sdp, message/sipfrag

Content-Type: application/vq-rtcpxr

Content-Length: 832

VQSessionReport

LocalMetrics:

Timestamps:START=2010-02-17T13:59:42Z STOP=2010-02-17T13:59:46Z

SessionDesc:PT=0 PD=G.711U PPS=50 SSUP=off

CallID:3c26a8de500f-12ct7zov3kjs

x-UserAgent:snom360/8.2.sf

FromID:<sip:446@intern.snom.de>

ToID:<sip:447@intern.snom.de;user=phone>

LocalAddr:IP=192.168.5.251 PORT=62754 SSRC=0xCBE3450E

RemoteAddr:IP=192.168.0.233 PORT=54018 SSRC=0xB80B52F3

DialogID:3c26a8de500f-12ct7zov3kjs;to-tag=866ed0cf03;from-tag=45hkui59ns

x-SIPmetrics:SVA=RG SRD=310 SFC=0

x-SIPterm:SDC=OK

JitterBuffer:JBA=0 JBR=0 JBN=0 JBM=0 JBX=65535

PacketLoss:NLR=0.0 JDR=0.0

BurstGapLoss:BLD=0.0 BD=0 GLD=0.0 GD=6569 GMIN=16

Delay:RTD=0 ESD=0 IAJ=4

RemoteMetrics:

JitterBuffer:JBA=0 JBR=0 JBN=0 JBM=0 JBX=0

PacketLoss:NLR=0.0 JDR=0.0

BurstGapLoss:BLD=0.0 BD=0 GLD=0.0 GD=4677 GMIN=16

Delay:RTD=0 ESD=0 IAJ=2

RTP Statistics
SIP Voice Quality Report Reaper (java)

The Reaper is a java tool is designed to sniff SIP/RTP/RTCP packets (using a
modified tcpdump agent pipe) and generate correlated voice quality reports in
accordance with RFC6035 forwarding the media stream statistics into the SIP
signaling flow for post-processing.

 RTCP Reports are processed as forwarded as received:
★ RTCP → VQIntervalReport → SIP PUBLISH

 RTP Final Statistics are released once the call is Terminated:
★ RTP → VQSessionReport → SIP PUBLISH

In order to work the Reaper depends on a modified tcpdump binary forwarding packets to
special queues feeding the Java process. This makes this solution only suitable for small,
custom setups.

REAPER Github: https://github.com/TerryHowe/SIP-Voice-Quality-Report-Reaper
RFC6035: https://tools.ietf.org/html/rfc6035

PUBLISH sip:collector@127.0.0.1:5999;transport=udp SIP/2.0.

Call-ID: f1f90855d85e9c874a0dd8e3b14bc607@127.0.0.2.

CSeq: 1 PUBLISH.

From: "reaper" <sip:reaper@127.0.0.2:5070>;tag=ReaperV1.0.

To: "collector" <sip:collector@127.0.0.1:5999>.

Via: SIP/2.0/UDP 127.0.0.2:5070;branch=reaperv1.0-

f1f90855d85e9c874a0dd8e3b14bc607-127.0.0.2-1-publish-127.0.0.2-5070333031.

Max-Forwards: 70.

Contact: "reaper" <sip:reaper@127.0.0.2:5070>.

Content-Type: application/vq-rtcpxr.

Content-Length: 451.

.

VQSessionReport : CallTerm.

LocalMetrics:.

SessionDesc:PT=8 PD=PCMA SR=8000.

Timestamps:START=2015-02-28T21:04:31.000582Z STOP=2015-02-28T21:04:36.000638Z.

CallID:1233727184.

FromID:<sip:caller@domain.net>.

ToID:<sip:callee@domain.net>.

OrigID:<sip:caller@domain.net>.

LocalAddr:IP:192.168.1.23 PORT:7079.

LocalMAC:99:72:b9:28:c2:82.

RemoteAddr:IP:192.168.1.55 PORT:30539.

RemoteMAC:99:e6:ba:df:7b:dd.

PacketLoss:NLR=4.6.

Delay:IAJ=166.

http://www.rfc-editor.org/rfc/rfc6035.txt
https://github.com/TerryHowe/SIP-Voice-Quality-Report-Reaper
https://tools.ietf.org/html/rfc6035

RTCP Statistics
Asterisk RTCP Statistics

The latest Asterisk patch developed by Alexandr Dubovikov and
Matt Jordan implements module res_hep_rtcp

The module performs RTCP packet capturing for the internal RTP
engine in Asterisk and transmits HEP3 encapsulated call quality
metrics & statistics in HEP encapsulated JSON format.

The module can be coupled with res_hep to build a full HEP
capture node and send SIP signaling as well as call QoS.

With the above setup, statistics can be observed historically and
in real time as they reach the server when observing a call
including pseudo-MOS score calculated on the client-side.

Example HOMER integration is presented on the side slide:

For more information and patch details:

https://github.com/sipcapture/homer/tree/master/asterisk_rtcp_patch

https://github.com/sipcapture/homer/tree/master/asterisk_rtcp_patch
https://github.com/sipcapture/homer/tree/master/asterisk_rtcp_patch

RTP Statistics
SIP User Agent: End-of-Call Reports

The Reporting End-of-Call Statistics in Session Initiation Protocol (SIP) BYE Message feature enables user-agents to send call
statistics to a remote end when a call itself terminates. The call statistics are sent as a new header in the BYE message or in the
200 OK message (response to BYE message).

The statistics include Real-time Transport Protocol (RTP) packets sent or received, total bytes sent or received, total number of
packets that are lost, delay jitter, round-trip delay, and call duration.

Commonly implemented SIP headers are X-RTP-Stat and P-RTP-Stats and the less complex RTP-RxStat / RTP-TxStat

X-RTP-Stat:

PS=207;OS=49680;;PR=314;OR=50240;PL=0;JI=600;LA=40;

The X-RTP-Stat header contains the following fields:

PS=<voice packets sent>

OS=<voice octets sent>

PR=<voice packets received>

OR=<voice octets received>

PL=<receive packet loss>

JI=<jitter in ms>

LA=<latency in ms>

Specs: https://www.avm.de/de/Extern/files/x-rtp/xrtpv32.pdf

P-RTP-Stat: PS=326,OS=52160,PR=318,OR=50880,PL=0,JI=0,LA=0,DU=7,

EN=G711a,DE=G711a

The P-RTP-Stat header contains the following fields:

PS=<Packets Sent>

OS=<Octets Sent>

PR=<Packets Recd>

OR=<Octets Recd>

PL=<Packets Lost>

JI=<Jitter>

LA=<Round Trip Delay in ms>

DU=<Call Duration in seconds>

EN=<Audio Encoder>

DE=<Audio Decoder>

https://www.avm.de/de/Extern/files/x-rtp/xrtpv32.pdf

RTP Statistics
RTPProxy Statistics injection into P-RTP-Stat Header

Although RTP Statistics are to be generated by the UA/client in order to be fully meaningful, RTPProxy can still
provide back its own internal rtp statistics (as seen by the relay) to be included in BYE / 200 OK messages using the
data sent back to the SIP Proxy core by RTPProxy module, and formatted in a P-RTP-Stat compatible header.

Additional information can be injected into the header from database queries or other local or external sources.

A pseudo basic example script extension could look as follows:

Pseudo P-RTP-Stats snippet for RTPProxy

 if (is_method("BYE")) {
 setflag(FLT_ACC); # do accounting ...
 setflag(FLT_ACCFAILED); # ... even if the transaction fails

 $var(xrtpstat) = $(rtpstat{s.striptail,1});

 # Work the new stats
 $var(rtp0) = $(var(xrtpstat){s.select,1, });
 $var(rtp1) = $(var(xrtpstat){s.select,2, });
 $var(rtp2) = $(var(xrtpstat){s.select,3, });
 $var(rtp3) = $(var(xrtpstat){s.select,4, });
 $var(rtp4) = $(var(xrtpstat){s.select,5, });
 if ($var(rtp0) != "" || $var(rtp1) != "")
 {
 append_hf("P-RTP-Stat: EX=RTPProxy,PS=$var(rtp0),PR=$var(rtp1),PL=$var(rtp3)\r\n");
 }
 }

RTP Statistics at Wire-Speed
nProbe RTP Plugin w/ Pseudo-MOS Estimation

NTOP nProbe (w/ VoIP RTP Plugin) can produce granular RTP Statistics for
network streams detected via nDPI and is able perform full SIP session
report bi-directional correlation and codec aware Pseudo-MOS/R-Factor
estimations, all exportable at user defined sample rates via JSON over
TCP or HTTP/S to a centralized collector.

Example RTP Plugin Syntax:
nprobe -T "%IPV4_SRC_ADDR %L4_SRC_PORT %IPV4_DST_ADDR %L4_DST_PORT %PROTOCOL %
RTP_IN_JITTER %RTP_OUT_JITTER %RTP_IN_PKT_LOST %RTP_OUT_PKT_LOST %
RTP_IN_PAYLOAD_TYPE %RTP_OUT_PAYLOAD_TYPE %SIP_CALL_STATE %RTP_SIP_CALL_ID %
SIP_CALL_ID %RTP_RTT %RTP_MOS %RTP_R_FACTOR %IN_PKTS %OUT_PKTS %RTP_IN_TRANSIT %
RTP_OUT_TRANSIT %RTP_RTT" --redis 127.0.0.1 --drop-flow-no-plugin -i eth1 -b 3 --
json-labels -t 30 --hep 10.0.10.20:9063--hep-auth 10:myhep123 -b 0 -G

Example RTP Statistics:
{"FIRST_SWITCHED":1411119211,"IPV4_SRC_ADDR":"1.2.2.222","L4_SRC_PORT":11034,"
IPV4_DST_ADDR":"1.1.1.233","L4_DST_PORT":37308,"PROTOCOL":17,"RTP_IN_JITTER":2391,"
RTP_OUT_JITTER":475,"RTP_IN_PKT_LOST":1,"RTP_OUT_PKT_LOST":0,"RTP_IN_PAYLOAD_TYPE":
18,"RTP_OUT_PAYLOAD_TYPE":18,"RTP_SIP_CALL_ID":"h8A02kd73jdc","IN_PKTS":729,"
OUT_PKTS":240,"IN_BYTES":43740,"OUT_BYTES":24000,"RTP_IN_TRANSIT":1135,"
RTP_OUT_TRANSIT":11,"RTP_RTT":0,"L7_PROTO_NAME":"RTP","RTP_MOS":435,"RTP_R_FACTOR":
9033,"TOTAL_FLOWS_EXP":19731}

NPROBE VoIP: http://ntop.org

%RTP_FIRST_SSRC First flow RTP Sync Source ID

%RTP_FIRST_TS First flow RTP timestamp

%RTP_LAST_SSRC Last flow RTP Sync Source ID

 %RTP_LAST_TS Last flow RTP timestamp

%RTP_IN_JITTER RTP jitter (ms * 1000)

%RTP_OUT_JITTER RTP jitter (ms * 1000)

%RTP_IN_PKT_LOST Packet lost in stream (src->dst)

%RTP_OUT_PKT_LOST Packet lost in stream (dst->src)

%RTP_IN_PAYLOAD_TYPE RTP payload type

%RTP_OUT_PAYLOAD_TYPE RTP payload type

%RTP_IN_MAX_DELTA Max delta (ms*100) between pkts (src->dst)

%RTP_OUT_MAX_DELTA Max delta (ms*100) between pkts (dst->src)

%RTP_SIP_CALL_ID SIP call-id corresponding to this RTP stream

%RTP_MOS RTP pseudo-MOS (value * 100)

%RTP_R_FACTOR RTP pseudo-R_FACTOR (value * 100)

%RTP_IN_TRANSIT RTP Transit (value * 100) (src->dst)

%RTP_OUT_TRANSIT RTP Transit (value * 100) (dst->src)

%RTP_RTT RTP Round Trip Time (ms)

%RTP_DTMF_TONES DTMF tones sent (if any) during the call

%SIP_RTP_CODECS SIP RTP codecs

%SIP_RTP_IPV4_SRC_ADDR SIP RTP stream source IP

%SIP_RTP_L4_SRC_PORT SIP RTP stream source port

%SIP_RTP_IPV4_DST_ADDR SIP RTP stream dest IP

%SIP_RTP_L4_DST_PORT SIP RTP stream dest port

http://10.20.2.58:9063/
http://ntop.org

Voice CDRs & LOGS
Elasticsearch + CaptAgent / nVoice

Already collecting metrics in Elasticsearch or any other JSON-centric backend? Good News! You can integrate your
voice statistics to your existing data infrastructure with very little work with minimal technical efforts and investment.

CDRs and System logs can now be aggregated with their network counterpart adding a further dimension to your data.

CAPTAGENT + JSON Module

NPROBE + ES/JSON + VoIP Plugin

SIP
stat

s +
RTP

stat
s

json parsed signaling + stats

logs, cdrs

Voice CDRs & LOGS
Experiment with HEPipe

Troubleshooting is not all about network packets - many times system logs will hold valuable pointers at internal issues
not expressed at the protocol level. There are many tools able to forward syslog/rsyslog to notorious collectors but for
those looking to build their own voice data collection, we have developed a HEP3 playground utility called HEPipe
HEPipe (pronounced HEP-pipe) is an application for logging arbitrary data (ie: logs, cdrs, debug lines)to a HEP/EEP
capture server such as HOMER or PCAPTURE via command pipe.

The utility can be used to prototype HEP3 implementations as well as to feed real data into a HEP Collector for real life
usage, for instance by using the session Call-ID as correlation parameter.

INPUT FORMAT:

timestamp_sec; timestamp_usec; correlation_id; source_ip; source_port; destination_ip; destinaton_port; payload in json

USAGE EXAMPLE:

echo '1396362930;1003;18731b65be;127.0.0.1;5060;10.0.0.1;5060;{"pl": 10, "jt": 10}'|./hepipe -s hepserver -p 9061 -t 100

https://github.com/sipcapture/homer
http://pcapture.com/

SIP Troubleshooting

AUTOMATED TESTS
Friendly Probes

SIP Testing with Scripted Agents
PJSUA and SIPSAK

pjsua can be used as a simple call generator to test SIP Trunk or equipment availability:

 # pjsua < (echo "sleep 2000;M;20;sip:192.168.1.10;sleep 10000;ha;sleep 5000;quit;")

pjsua can be launched in daemon mode and configured to act as a playback auto-responder:

pjsua –null-audio –play-file=data3.wav –auto-play –auto-answer=200 –config-file=pj-config

sipsak is perfectly suitable for simple tests such as sending a single OPTION probe:

 # sipsak -vv -s sip:192.168.1.10:5060

sipsak can also send customer methods (NOTIFY Event: check-sync;reboot=true causing yealink phone to reboot):

 # sipsak -f reboot_yealink.sipfile -s sip:1234@192.168.1.10

sipsak is ideal for Nagios usage: http://exchange.nagios.org/directory/Plugins/Network-Protocols/*-VoIP/SIP/check_sip-sipsak/details

(we use this ourselves since 2002 and still up)

--id sip:1234@domain.com
--registrar sip:domain.com
--username 1234
--password password
--realm asterisk
--null-audio
--auto-play
--play-file /tmp/audio.wav

http://tomeko.net/other/sipp/pjsua/commands.txt
http://tomeko.net/other/sipp/sipsak/reboot_yealink.sipfile
http://tomeko.net/other/sipp/sipsak/reboot_yealink.sipfile
http://exchange.nagios.org/directory/Plugins/Network-Protocols/*-VoIP/SIP/check_sip-sipsak/details

SIP Testing with quality-aware Agents
BARESIP User-Agent w/ X-RTP-Stats

Baresip is a modular open-source (BSD) user agent built on top of LibRE/LibREM by Alfred E. Heggstad

One of our contributions to the project was the ability to export the valuable internal stream/codec details and statistics
(Jitter, Packet Loss, Payload details, etc) by implementing X-RTP-Stat header export in BYE/200 OK SIP Messages.

This enables Baresip being used as a "quality probing" SIP user-agent (or echo-test agent) with call-quality results
efficiently distributed alongside the session closure methods, featured in many existing brand Hardware SIP Phones.

Test Calls can be automatically scheduled (or triggered via HTTP Command API) and results collected by existing systems.

Header Example:
X-RTP-Stat: EX=BareSip;CS=0;CD=152;PR=7383;PS=7635;PL=0,0;PD=0,0;JI=0.8,0.1;EN=PCMU/8000;DE=PCMU/8000;IP=A.B.C.D:4202,E.F.G.H:29778;*

BARESIP Git: https://github.com/alfredh/baresip

BARESIP Wiki: https://github.com/alfredh/baresip/wiki

XRTP Specs: https://www.avm.de/de/Extern/files/x-rtp/xrtpv32.pdf

https://github.com/alfredh/baresip
https://github.com/alfredh/baresip/wiki
https://www.avm.de/de/Extern/files/x-rtp/xrtpv32.pdf

SIP Testing with quality-aware Agents
BARESIP User-Agent w/ X-RTP-Stats (continued)

Baresip agents can be deployed in tandem to
validate call quality across specific SIP Paths.

In the following illustration:

● UA#1 Originates a session and steams pre-
recorded audio to UA#2

● UA#2 acting as an Echo-Test streaming all
packets back to the UA#1 (auto-answer)

● Both Agents will publish Stream quality statistics
on session termination as X-RTP-Stats

A Capture Server monitoring SIP Signaling (such
as HOMER) will be able to extract and process the
quality reports from SIP Headers and provide this
additional insight for troubleshooting issues in
investigations or for alarming on automated tests.

UA#1:
BYE + X-RTP-Stat Header

UA#2:
200 OK + X-RTP-Stat
Header

Wire RTP
Statistics

SIP Testing with Scripted Agents
SIPP Scenarios for Service Validation

SIPp is a free Open-Source test tool and traffic generator for the SIP protocol, able to read custom XML scenario files describing
from very simple to complex call flows simulating both User-Agent Servers and Clients supporting optional media traffic through
RTP echo and RTP / PCAP replay. While optimized for stress and performance testing, SIPp can be used to run one single call
and exit, providing a passed/failed verdict (Exit code 0: Test Successful, Exit code 1: Test with Failures) and export its details and
results to CSV files making it perfectly suitable for ad-hoc testing and able to be paired with other platforms/scripts.

SIPp scenarios are easy and fun to write and customize with many community
collections ready to be used and extended for just about any purpose - Our favourite
is kindly provided by Saghul on Github:

https://github.com/saghul/sipp-scenarios

Several old-school tools are available to convert PCAP traces to SIPp Scenarios:
● http://sourceforge.net/projects/pcap2sipp/
● http://frox25.no-ip.org/~mtve/wiki/Pcap2Sipp.html
● http://svn.digium.com/svn/sniff2sipp/trunk/sniff2sipp

SIPp also runs great on the Raspberry-PI and makes a fantastic pocket tool. A
good custom Pi-Tailored installer is maintained by Paul Miller on bitbucket:

 # wget “http://bitbucket.org/idkpmiller/installation-scripts/raw/master/install_sipp.sh”
 # chmod +x install_sipp.sh
 # ./install_sipp.sh

https://github.com/saghul/sipp-scenarios
http://sourceforge.net/projects/pcap2sipp/
http://sourceforge.net/projects/pcap2sipp/
http://frox25.no-ip.org/~mtve/wiki/Pcap2Sipp.html
http://frox25.no-ip.org/~mtve/wiki/Pcap2Sipp.html
http://svn.digium.com/svn/sniff2sipp/trunk/sniff2sipp
http://svn.digium.com/svn/sniff2sipp/trunk/sniff2sipp
http://bitbucket.org/idkpmiller/installation-scripts/raw/master/install_sipp.sh

Running too BIG for Homer and MySQL?
Meet PCAPTURE: The Extensible Capture Server and API

PCAPTURE is the commercial big-brother of HOMER and
SIPCAPTURE, designed and crafted to provide a virtually
infinite voice monitoring solution, leveraging the vast
experience gathered assisting and developing solutions for
some of the largest and busiest ITSPs,
Telecommunication Networks and Vendors of Voice
Services and Equipment in the industry.

PCAPTURE provides many additional features:

● Real-Time Tracking and Monitoring of Sessions
● RTP/RTCP/PUBLISH QoS Reports, MOS/RFactor
● CDRs & Log Collectors with integrated parsing
● Automatic Correlation of Sessions legs, QoS, Logs
● Scalable, Multiple Distributed-Database layers
● Rich Multi-User User-Interface (HTML5/ExtJS)
● 1-Click Complete Session Details, Real-Time Usage
● Fully customizable Dashboard and Widgets
● Cross-Platform Capture Agents & Analyzers
● 100% REST API based & Integration Ready
● One Click-Troubleshooting for Tech and Non-Tech

Find out more: http://www.pcapture.com

http://www.sipcapture.org/
http://www.sipcapture.org/
http://www.sipcapture.org/
http://www.pcapture.com

Install & Run a HOMER Capture Server & Capture Agent in a snap!

All SIPCAPTURE Projects are now available as packages supporting CentOS 6/7, Debian 7/8 and Ubuntu Server 14+

Pick an install script for your platform - it will detect your platform and architecture, install the gpg key that we use for repo
signing and setup the repo accordingly. Once set, proceed to install the Homer bundle meta-packet for your OS distribution.

 DEB:

Debian 7/8, Ubuntu Server 14.04

curl -s https://packagecloud.io/install/repositories/qxip/homer/script.deb.sh | sudo bash

 RPM:

CentOS 6/7, RHEL 6/7

curl -s https://packagecloud.io/install/repositories/qxip/homer/script.rpm.sh | sudo bash

BONUS

Any Questions?

Q&A

SIP Troubleshooting

Time’s UP! Want to go further?

Contact us to learn more about our advanced
Capture and Troubleshooting Workshops

<training@qxip.net>

