

Jibe Hub
RCS Exchange for Mobile Operators

Anil Sharma
Director, Engineering @ Jibe Mobile
anil@jibemobile.com

# Our Thirty minutes



- Jibe Introductions Who we are
- RCS
  - What is RCS
  - Interconnect A reason for Hub not new
- Jibe RCS Hub
  - Jibe Hub Solving the interconnection explosion
    - Jibe Hub Hub Provider's Value Proposition
  - Scaling to meet the needs
- Jibe Hub Architecture
  - Design Principles
  - Jibe Hub a few key components

# The IP Communications Cloud



Bringing carriers together to deliver the next generation of IP messaging services

- Founded in 2006, with a global presence. Offices in Mountain View, London, Dusseldorf.
- RCS specification pioneer, we were instrumental in evolving the RCS specification.
- Delivering the next generation of messaging services and cloud based infrastructure to the telecommunications market.
- Rapidly connecting carriers to deliver the new consumer experience beyond voice & SMS - video calling, group chat, and sharing (files, video, photos and location).
- www.jibemobile.com

# RCS – Rich Communication





- Rich Communication Services over IP/IMS
  - IM, Group Chat, Image Share, Location Share, Voice, Video Chat, Presence
- RCS is MNO driven
  - Provider: MNO is the RCS provider
    - Not just Data Pipes to OTT providers (Skype, WhatsApp, Viber...)
  - Foundation: Based on IMS (IP Multimedia Subsystem)
  - Standards: GSMA Standards based
    - Move on from SMS & MMS to RCS
    - Allows multiple independent equipment players
  - Interoperability: a key to success
    - My MNO and my friend's MNO can be different
    - And I should be able to talk to Skype & WhatsApp friends too
    - RCS NNI standards by GSMA supports these interoperability needs



## Interconnectivity issues – not new – Taking a cue from SMS









#### Evolution in the GSMA "Data Services"

- Early SMSC deployments required, each MNO to establish SMS interconnectivity with all other MNOs
  - This required agreements between international Operators
- SMS Hub as a path changing solution by GSMA in 2006
  - It became a central location for SMSC interconnectivity Managed by *Hub Providers*
- Hub Providers would provision it as a framework "outside" the operators
  - SMS routing is provided as a managed service to Operators (normally with a per SMS fee to the operator)
  - Reduces complexity for Operators, allowing global and roaming reach.
  - Support Least Cost Routing and Store and Forward Allows Operators to focus on core

In many ways this is comparable to the handling of RCS Services

## RCS launches – Inter Connection Issues



- With 81 Operators committed to launch RCS by 2015 (source: GSMA)
  - Each NNI needs to be agreed by each Operator
  - This will require 6400 interfaces to be configured.
     Managed and maintained See Picture
- Interconnectivity has been agreed between individual Operators separately.
- Agreements are generally country wide (e.g. Spain, Germany, South Korea, France)
- Clearly this is a short term solution, not scalable

#### Four MNO RCS Operators interconnecting



Twelve integration points required, at each of IMS/RCS core's SBG

RCS Serv can be from different vendors – posing additional interworking requirement

For a long term solution, RCS Hubs, as proposed by the GSMA are essential.

## Jibe RCS Hub – Solving the interconnection explosion





## Value Proposition

- Reduces the technical complexity of carrier interconnects
  - Carrier performs a single NNI to the Jibe
     Hub
  - This provides connectivity to all connected service instances – both Jibe clouds and other connected carriers IMS
- Reduces commercial complexity
  - A single agreement with Jibe covers multiple MNOs
- Reduces the complexity of end-to-end service level interworking
  - Harmonized" traffic managing interoperability
  - Provide reference client and stubs







Client

Client

Client

OTT<sub>1</sub>

OTT<sub>2</sub>

OTT<sub>3</sub>

# **Hub Design Principles**



#### One connection to the hub does not affect others

- Additional connections can be added and existing ones modified without downtime on any other link
- Hub is stateless
- Upgrades of an individual link or the hub infrastructure are not visible to other connected networks (topology hiding)

## Traffic inside hub is normalized

- Session Border Gateways normalize inbound traffic to supported headers/ formats / features ("Standard + Jibe extensions")
- Cryptography is terminated inside the originating network
- Traffic inside the hub is not encrypted

## Jibe Hub Architecture





#### Hub treats all connected networks the same

- Central Routing Service provides back-end for all routing decisions
- Look-ups for non-Jibe users are performed via the GSMA Pathfinder API
- Jibe cloud user data populates Jibe's Route
   Director to reduce external lookups
- Routing mandates Tel URI addressing throughout Hub and for NNIs

#### Hub Security

- All external traffic into hub is VPN protected
- No media or signaling is carried across the public internet in the clear

#### Hub Availability

- 99.99+% availability
- Automatic failover for all nodes in the system.

## Jibe Session Border Gateway (SBG)





- Aligns features for outbound traffic
  - Removes tags based on interconnect rules
- Shapes messages
- Routes traffic to destination SBG
- SIP routing decisions based on Route Director lookup
- Terminates media
- Can provide stats about an individual NNI

# Other core components – meeting Scalability and Redundancy needs





- SIP traffic is load balanced via external IP
  - Each inbound SIP message is handed to a Serving SIP Proxy
  - Serving SIP proxy handles a single SIP dialog
- All SIP proxies must be reachable across NNI
- Media endpoints are exposed directly via public IPs of the individual SBGs to support media termination.
  - Failure of an SBG node will affect media sessions in progress on that SBG.
- SIP Proxies are OpenSIPS

## Jibe Route Director





- Determines destination domain/NNI for SIP messages based on configurable routing rules
  - Mappings for Jibe subscribers are populated by individual cloud instances
  - Home network of unknown/non-Jibe subscribers is determined via a Pathfinder query and the correct routing is applied
  - Individual NNIs in the same country can be configured with "short circuit" routes to avoid external queries to Pathfinder
- High performance name-value cache maintains subscriber<>target domain mappings

# Jibe Hub: Helping MNO's move from SMS to RCS



14



# Thank you OpenSIPS!



- OpenSIPS is a phenomenal product
  - Modular
  - Scalability and clustering
  - Performance
  - Extremely easy and flexible to define routing rules based on available framework
  - Very helpful community
  - Experience with deploying public and private clouds
- Jibe RCS HUB and Jibe RCS Cloud use OpenSIPS as SIP proxy servers.
- We have experienced and used its
  - Enterprise grade scalability
  - Configuration Ease
  - Support for Load Balancing
  - Easy extensions for Billing Mediation

# References & Further Reading



- GSMA NNI : http://www.gsma.com/network2020/wp-content/uploads/2013/10/IR.90-v6.o.pdf
- RCS Blackbird Spec : <a href="http://www.gsma.com/network2020/wp-content/uploads/2014/01/joyn-Blackbird-PDD-V3-o.pdf">http://www.gsma.com/network2020/wp-content/uploads/2014/01/joyn-Blackbird-PDD-V3-o.pdf</a>
- [RFC 2119] "Key words for use in RFCs to Indicate Requirement Levels", S. Bradner, March 1997. Available at http://www.ietf.org/rfc/rfc2119.txt
- [RFC 3326] "The Reason Header Field for the Session Initiation Protocol (SIP)", H. Schulzrinne, D. Oran, G. Camarillo, December 2002. Available at http://www.ietf.org/rfc/rfc3326.txt
- [PRD IR.74] IR.74.1.4 Video Share Interoperability Specification http://www.gsma.com/newsroom/ir-74-1-4-video-share-interoperability-specification
- Whitepapers Openmind, IMS World Forum Presentations: http://www.slideshare.net/OpenmindNetworks/rcs-hub-solving-rcs-interconnect-now?related=1
- [RFC 3840] "Indicating User Agent Capabilities in the Session Initiation Protocol (SIP)", J. Rosenberg, H. Schulzrinne, P. Kyzivat, August 2004.
- http://www.ietf.org/rfc/rfc384o.txt
- http://www.jibemobile.com/technology/telecom-ip-standards/



Thank you
Anil Sharma
anil@jibemobile.com