
WebRTC-to-SIP and back
It’s not all about audio and video!

Lorenzo Miniero
@lminiero@fosstodon.org

OpenSIPS Summit

May 15th 2024, Valencia

https://fosstodon.org/@lminiero


A chance to practice my broken Spanish!



Who am I?

Lorenzo Miniero
• Ph.D @ UniNA
• Chairman @ Meetecho
• Main author of Janus

Contacts and info
• lorenzo@meetecho.com
• https://fosstodon.org/@lminiero
• https://www.meetecho.com
• https://lminiero.it

lorenzo@meetecho.com
https://fosstodon.org/@lminiero
https://www.meetecho.com
https://lminiero.it


Just a few words on Meetecho

• Co-founded in 2009 as an academic spin-off
• University research efforts brought to the market
• Completely independent from the University

• Focus on real-time multimedia applications
• Strong perspective on standardization and open source

• Several activities
• Consulting services
• Commercial support and Janus licenses
• Streaming of live events (IETF, ACM, etc.)

• Proudly brewed in sunny Napoli, Italy



A bit of context: Janus, WebRTC and SIP

Janus
General purpose, open source WebRTC server
• https://github.com/meetecho/janus-gateway
• Demos and documentation: https://janus.conf.meetecho.com
• Community: https://janus.discourse.group/

https://github.com/meetecho/janus-gateway
https://janus.conf.meetecho.com
https://janus.discourse.group/


SIP plugin in Janus

https://janus.conf.meetecho.com/docs/sip

https://janus.conf.meetecho.com/docs/sip


An endpoint of behalf of WebRTC users

• Janus SIP plugin acts as a collection of SIP endpoints, not a server/trunk

• SIP stack implemented with Sofia-SIP
• WebRTC users only see the Janus API (JSON), no SIP
• No transcoding, media is only relayed
• Built-in recording (separate media legs)

• Simplifies life for web developers

• No need to worry about a SIP stack (only SIP URIs)
• Basic methods/events to handle dialogs (call, answer, hangup, message, etc.)
• Allows SIP headers injection/interception in many requests
• Support for more advanced features too (e.g., hold, transfer, etc.)



An endpoint of behalf of WebRTC users

• Janus SIP plugin acts as a collection of SIP endpoints, not a server/trunk

• SIP stack implemented with Sofia-SIP
• WebRTC users only see the Janus API (JSON), no SIP
• No transcoding, media is only relayed
• Built-in recording (separate media legs)

• Simplifies life for web developers

• No need to worry about a SIP stack (only SIP URIs)
• Basic methods/events to handle dialogs (call, answer, hangup, message, etc.)
• Allows SIP headers injection/interception in many requests
• Support for more advanced features too (e.g., hold, transfer, etc.)



Works great with OpenSIPS!

Workshop on Janus and SIP (lesson/tutorial) at OpenSIPS 2020
https://www.youtube.com/watch?v=fv9KwrguR-4&t=3544s

https://www.youtube.com/watch?v=fv9KwrguR-4&t=3544s


Audio and video are “easy”

• Both SIP and WebRTC use SDP and RTP/RTCP

• WebRTC uses SDP/RTP/RTCP on “steroids”

• Apart from this, just differences in encryption (WebRTC mandates DTLS-SRTP)

• Media is basically encoded, packaged and sent the same way

• As long as the same codec is used, they’re interoperable

• When they aren’t, transcoding helps (but Janus won’t do it for you)

• WebRTC has mandatory-to-implement codecs

• Opus and G.711 for audio, VP8 and H.264 (baseline) for video

• G.711 and H.264 should guarantee compliance with legacy equipment



Audio and video are “easy”

• Both SIP and WebRTC use SDP and RTP/RTCP

• WebRTC uses SDP/RTP/RTCP on “steroids”

• Apart from this, just differences in encryption (WebRTC mandates DTLS-SRTP)

• Media is basically encoded, packaged and sent the same way

• As long as the same codec is used, they’re interoperable

• When they aren’t, transcoding helps (but Janus won’t do it for you)

• WebRTC has mandatory-to-implement codecs

• Opus and G.711 for audio, VP8 and H.264 (baseline) for video

• G.711 and H.264 should guarantee compliance with legacy equipment



Audio and video are “easy”

• Both SIP and WebRTC use SDP and RTP/RTCP

• WebRTC uses SDP/RTP/RTCP on “steroids”

• Apart from this, just differences in encryption (WebRTC mandates DTLS-SRTP)

• Media is basically encoded, packaged and sent the same way

• As long as the same codec is used, they’re interoperable

• When they aren’t, transcoding helps (but Janus won’t do it for you)

• WebRTC has mandatory-to-implement codecs

• Opus and G.711 for audio, VP8 and H.264 (baseline) for video

• G.711 and H.264 should guarantee compliance with legacy equipment



SIP sometimes does more than that, though!

• A whole ecosystem of other protocols that could be used
• Real-Time Text (T.140 over RTP)
• Message Session Relay Protocol (MSRP)
• Binary Floor Control Protocol (BFCP)
• Fax (T.38 over RTP)
• ...

• These protocols can’t simply be gateway-ed to WebRTC
• WebRTC supports RTP, but only for audio/video, not generic data
• Custom protocols are not supported at all

• WebRTC-to-SIP gateways will in general strip them from the SDP
• We can’t rely on a WebRTC browser to simply reject unsupported media
• An unsupported m-line will cause an exception in setRemoteDescription



SIP sometimes does more than that, though!

• A whole ecosystem of other protocols that could be used
• Real-Time Text (T.140 over RTP)
• Message Session Relay Protocol (MSRP)
• Binary Floor Control Protocol (BFCP)
• Fax (T.38 over RTP)
• ...

• These protocols can’t simply be gateway-ed to WebRTC
• WebRTC supports RTP, but only for audio/video, not generic data
• Custom protocols are not supported at all

• WebRTC-to-SIP gateways will in general strip them from the SDP
• We can’t rely on a WebRTC browser to simply reject unsupported media
• An unsupported m-line will cause an exception in setRemoteDescription



SIP sometimes does more than that, though!

• A whole ecosystem of other protocols that could be used
• Real-Time Text (T.140 over RTP)
• Message Session Relay Protocol (MSRP)
• Binary Floor Control Protocol (BFCP)
• Fax (T.38 over RTP)
• ...

• These protocols can’t simply be gateway-ed to WebRTC
• WebRTC supports RTP, but only for audio/video, not generic data
• Custom protocols are not supported at all

• WebRTC-to-SIP gateways will in general strip them from the SDP
• We can’t rely on a WebRTC browser to simply reject unsupported media
• An unsupported m-line will cause an exception in setRemoteDescription



Data channels to the rescue!



Data channels to the rescue!



What are data channels?

• Arbitrary real-time connection for pretty much anything

• Bidirectional data between two WebRTC peers

• Support for multiple channels of different kinds

• Supports ordered/unordered and reliable/unreliable

• Generic data sent via SCTP and encapsulated in DTLS

• SCTP implements features, DTLS implements security

• Negotiated as an application in the SDP

• m=application 9 UDP/DTLS/SCTP webrtc-datachannel



What are data channels?

• Arbitrary real-time connection for pretty much anything

• Bidirectional data between two WebRTC peers

• Support for multiple channels of different kinds

• Supports ordered/unordered and reliable/unreliable

• Generic data sent via SCTP and encapsulated in DTLS

• SCTP implements features, DTLS implements security

• Negotiated as an application in the SDP

• m=application 9 UDP/DTLS/SCTP webrtc-datachannel



What are data channels?

• Arbitrary real-time connection for pretty much anything

• Bidirectional data between two WebRTC peers

• Support for multiple channels of different kinds

• Supports ordered/unordered and reliable/unreliable

• Generic data sent via SCTP and encapsulated in DTLS

• SCTP implements features, DTLS implements security

• Negotiated as an application in the SDP

• m=application 9 UDP/DTLS/SCTP webrtc-datachannel



That’s better, but still not enough!

• Non audio/video protocols have their own technical requirements

• RTT and T.38 will have custom RTP packetization rules

• BFCP/MSRP/others will require custom UDP or TCP transport

• All this will be reflected in the SDP negotiation

• WebRTC only supports m=application + UDP/DTLS/SCTP

• It’s the only non audio/video thing it can negotiate

• A gateway will have more work to do than with RTP audio/video

• Translate between SDP formats (e.g., custom protocol↔ application)

• Gateway the protocol itself (e.g., RTP/T.140↔ data channel)



That’s better, but still not enough!

• Non audio/video protocols have their own technical requirements

• RTT and T.38 will have custom RTP packetization rules

• BFCP/MSRP/others will require custom UDP or TCP transport

• All this will be reflected in the SDP negotiation

• WebRTC only supports m=application + UDP/DTLS/SCTP

• It’s the only non audio/video thing it can negotiate

• A gateway will have more work to do than with RTP audio/video

• Translate between SDP formats (e.g., custom protocol↔ application)

• Gateway the protocol itself (e.g., RTP/T.140↔ data channel)



That’s better, but still not enough!

• Non audio/video protocols have their own technical requirements

• RTT and T.38 will have custom RTP packetization rules

• BFCP/MSRP/others will require custom UDP or TCP transport

• All this will be reflected in the SDP negotiation

• WebRTC only supports m=application + UDP/DTLS/SCTP

• It’s the only non audio/video thing it can negotiate

• A gateway will have more work to do than with RTP audio/video

• Translate between SDP formats (e.g., custom protocol↔ application)

• Gateway the protocol itself (e.g., RTP/T.140↔ data channel)



A practical example: Real-Time Text (T.140)

• Text transmitted instantly, as it is typed or created

• ITU-T T.140 (Protocol for multimedia application text conversation)

• Allows for real-time editing (e.g., backspace, rewriting)

• T.140 messages transported over RTP

• RFC 4103 (RTP Payload for Text Conversation)

• Redundancy implemented via RED (RFC 2198)

Specification to use T.140 over data channels

• T.140 Real-Time Text Conversation over WebRTC Data Channels (RFC 8865)

• https://www.rfc-editor.org/rfc/rfc8865.html

https://www.rfc-editor.org/rfc/rfc8865.html


A practical example: Real-Time Text (T.140)

• Text transmitted instantly, as it is typed or created

• ITU-T T.140 (Protocol for multimedia application text conversation)

• Allows for real-time editing (e.g., backspace, rewriting)

• T.140 messages transported over RTP

• RFC 4103 (RTP Payload for Text Conversation)

• Redundancy implemented via RED (RFC 2198)

Specification to use T.140 over data channels

• T.140 Real-Time Text Conversation over WebRTC Data Channels (RFC 8865)

• https://www.rfc-editor.org/rfc/rfc8865.html

https://www.rfc-editor.org/rfc/rfc8865.html


A practical example: Real-Time Text (T.140)

• Text transmitted instantly, as it is typed or created

• ITU-T T.140 (Protocol for multimedia application text conversation)

• Allows for real-time editing (e.g., backspace, rewriting)

• T.140 messages transported over RTP

• RFC 4103 (RTP Payload for Text Conversation)

• Redundancy implemented via RED (RFC 2198)

Specification to use T.140 over data channels

• T.140 Real-Time Text Conversation over WebRTC Data Channels (RFC 8865)

• https://www.rfc-editor.org/rfc/rfc8865.html

https://www.rfc-editor.org/rfc/rfc8865.html


SIP plugin in Janus normally...



SIP plugin in Janus + RTT

https://github.com/meetecho/janus-gateway/pull/3231

https://github.com/meetecho/janus-gateway/pull/3231


Example: SDP offer from SIP/RTT endpoint

v=0
o=Lorenzo_Miniero 1 1 IN IP4 192.168.1.74
s=Omnitor_SDP_v1.1
c=IN IP4 192.168.1.74
t=0 0
m=text 1024 RTP/AVP 99 98
a=rtpmap:99 red/1000
a=fmtp:99 98/98/98
a=rtpmap:98 t140/1000



Example: SDP offer to WebRTC endpoint

v=0
o=Lorenzo_Miniero 1 1 IN IP4 192.168.1.74
s=Omnitor_SDP_v1.1 t=0 0
a=group:BUNDLE data
a=msid-semantic: WMS janus
m=application 9 UDP/DTLS/SCTP webrtc-datachannel
c=IN IP4 192.168.1.74
a=sendrecv
a=sctp-port:5000
a=mid:0
[.. ICE/DTLS details follow ..]



Testing: TIPcon1 (SIP/RTT)

https://www.meetecho.com/blog/realtime-text-sip-and-webrtc/

https://www.meetecho.com/blog/realtime-text-sip-and-webrtc/


Testing: Janus SIP demo (WebRTC)

https://www.meetecho.com/blog/realtime-text-sip-and-webrtc/

https://www.meetecho.com/blog/realtime-text-sip-and-webrtc/


A more complex example: MSRP

• Instant Messaging protocol negotiated in SIP/SDP

• RFC 4975 (Message Session Relay Protocol)

• Requires a reliable transport (e.g., TCP)

• Used m=message m-line type for negotiation

• Protocol must be TCP/MSRP or TCP/TLS/MSRP

• path attribute defines endpoints

Specification to use MSRP over data channels

• Message Session Relay Protocol (MSRP) over Data Channels (RFC 8873)

• https://www.rfc-editor.org/rfc/rfc8873.html

https://www.rfc-editor.org/rfc/rfc8873.html


A more complex example: MSRP

• Instant Messaging protocol negotiated in SIP/SDP

• RFC 4975 (Message Session Relay Protocol)

• Requires a reliable transport (e.g., TCP)

• Used m=message m-line type for negotiation

• Protocol must be TCP/MSRP or TCP/TLS/MSRP

• path attribute defines endpoints

Specification to use MSRP over data channels

• Message Session Relay Protocol (MSRP) over Data Channels (RFC 8873)

• https://www.rfc-editor.org/rfc/rfc8873.html

https://www.rfc-editor.org/rfc/rfc8873.html


A more complex example: MSRP

• Instant Messaging protocol negotiated in SIP/SDP

• RFC 4975 (Message Session Relay Protocol)

• Requires a reliable transport (e.g., TCP)

• Used m=message m-line type for negotiation

• Protocol must be TCP/MSRP or TCP/TLS/MSRP

• path attribute defines endpoints

Specification to use MSRP over data channels

• Message Session Relay Protocol (MSRP) over Data Channels (RFC 8873)

• https://www.rfc-editor.org/rfc/rfc8873.html

https://www.rfc-editor.org/rfc/rfc8873.html


Much more complex to handle than RTT

• T.140 still uses RTP (and UDP)

• Easier to integrate in existing Janus SIP plugin bridging

• Complexity mostly in SDP translation (and maybe RED)

• MSRP requires a reliable transport protocol

• With TCP, who connects to who?

• Integrating TCP with UDP poll loop can be tricky (head-of-line blocking)

• On the WebRTC side, we need to be able to provide MSRP path

• It won’t be in the SDP (attribute stripped) and dcsa unsupported by browsers

• Needs out of band (Janus SIP plugin API?) mechanism for that



Much more complex to handle than RTT

• T.140 still uses RTP (and UDP)

• Easier to integrate in existing Janus SIP plugin bridging

• Complexity mostly in SDP translation (and maybe RED)

• MSRP requires a reliable transport protocol

• With TCP, who connects to who?

• Integrating TCP with UDP poll loop can be tricky (head-of-line blocking)

• On the WebRTC side, we need to be able to provide MSRP path

• It won’t be in the SDP (attribute stripped) and dcsa unsupported by browsers

• Needs out of band (Janus SIP plugin API?) mechanism for that



Much more complex to handle than RTT

• T.140 still uses RTP (and UDP)

• Easier to integrate in existing Janus SIP plugin bridging

• Complexity mostly in SDP translation (and maybe RED)

• MSRP requires a reliable transport protocol

• With TCP, who connects to who?

• Integrating TCP with UDP poll loop can be tricky (head-of-line blocking)

• On the WebRTC side, we need to be able to provide MSRP path

• It won’t be in the SDP (attribute stripped) and dcsa unsupported by browsers

• Needs out of band (Janus SIP plugin API?) mechanism for that



SIP plugin in Janus + MSRP

https://github.com/meetecho/janus-gateway/tree/sip-msrp

https://github.com/meetecho/janus-gateway/tree/sip-msrp


Example: SDP offer from Blink (SIP/MSRP)

v=0
o=- 3922178296 3922178296 IN IP4 192.168.1.74
s=Blink 5.5.1 (Linux)
t=0 0
m=message 2855 TCP/MSRP *
c=IN IP4 192.168.1.74
a=path:msrp://192.168.1.74:2855/59a83c96684d4fc5fa41;tcp
a=accept-types:message/cpim text/* image/* \\

application/im-iscomposing+xml
a=accept-wrapped-types:text/* image/* \\

application/im-iscomposing+xml
a=setup:active



Example: SDP offer to WebRTC endpoint

v=0
o=- 3922178296 3922178296 IN IP4 192.168.1.74
s=Blink 5.5.1 (Linux)
t=0 0
a=group:BUNDLE 0
a=extmap-allow-mixed
a=msid-semantic: WMS *
m=application 9 UDP/DTLS/SCTP webrtc-datachannel
c=IN IP4 192.168.1.74
a=sendrecv
a=sctp-port:5000
[.. ICE/DTLS details follow ..]



Testing: Janus SIP demo (WebRTC)



What’s next?

• Both RTT and MSRP “work” in Janus, but there’s a lot to do!
• RTT is in a better shape, but needs testing with actual endpoints
• MSRP in a more embrional stage, needs a lot of love

• Multiple protocols in same PeerConnection not supported yet either
• Data channels allow for that (single m-line, multiple labels)
• We need better mapping when dealing with SDP translation

• Maybe add support for other protocols?
• Not sure what’s really used and needed, out there

• Is this effort really worth it, though?
• Probably yes for RTT (Emergency Services mandate it)
• Other protocols may have better “solutions” already



What’s next?

• Both RTT and MSRP “work” in Janus, but there’s a lot to do!
• RTT is in a better shape, but needs testing with actual endpoints
• MSRP in a more embrional stage, needs a lot of love

• Multiple protocols in same PeerConnection not supported yet either
• Data channels allow for that (single m-line, multiple labels)
• We need better mapping when dealing with SDP translation

• Maybe add support for other protocols?
• Not sure what’s really used and needed, out there

• Is this effort really worth it, though?
• Probably yes for RTT (Emergency Services mandate it)
• Other protocols may have better “solutions” already



What’s next?

• Both RTT and MSRP “work” in Janus, but there’s a lot to do!
• RTT is in a better shape, but needs testing with actual endpoints
• MSRP in a more embrional stage, needs a lot of love

• Multiple protocols in same PeerConnection not supported yet either
• Data channels allow for that (single m-line, multiple labels)
• We need better mapping when dealing with SDP translation

• Maybe add support for other protocols?
• Not sure what’s really used and needed, out there

• Is this effort really worth it, though?
• Probably yes for RTT (Emergency Services mandate it)
• Other protocols may have better “solutions” already



What’s next?

• Both RTT and MSRP “work” in Janus, but there’s a lot to do!
• RTT is in a better shape, but needs testing with actual endpoints
• MSRP in a more embrional stage, needs a lot of love

• Multiple protocols in same PeerConnection not supported yet either
• Data channels allow for that (single m-line, multiple labels)
• We need better mapping when dealing with SDP translation

• Maybe add support for other protocols?
• Not sure what’s really used and needed, out there

• Is this effort really worth it, though?
• Probably yes for RTT (Emergency Services mandate it)
• Other protocols may have better “solutions” already



Thanks! Questions? Comments?

Contacts
• https://fosstodon.org/@lminiero
• https://twitter.com/elminiero
• https://twitter.com/meetecho
• https://www.meetecho.com/blog/

https://fosstodon.org/@lminiero
https://twitter.com/elminiero
https://twitter.com/meetecho
https://www.meetecho.com/blog/

