
Tackling Big Telco Data
With ClickHouse

• Jonathan Abrams @ NexPath Networks
jon@nexpath.net

Who am I?

• Started out in telecom back in 2001

• Along with switching, background in software
development and database work

• Work with the switching, operations and financial
aspects of customers’ businesses

• Successfully migrated many customers to more
open, financially viable solutions

What is ClickHouse?

• ClickHouse is an open-source, high-performance
column-store database with a SQL front end

• Developed by Yandix

• Column-store storage layout is key to
ClickHouse’s performance

What ClickHouse is good at

• Storing lots of data

• Aggregate (OLAP) queries on large tables

• (Semi) Structured Data

• Time Series Data

Even More Good

• Fast queries on reasonably powerful hardware

• Decent performance on platter storage

• Very flexible interacting with outside data sources

• Replication and distributed queries

What is not so great

• OLTP

• No ACID

• Key-Value Store

Usage Scenarios

• CDR/Event record storage for reporting and
analysis

• CDR/Event record archival

• Streaming and tabulating event

• SIP Capture Storage

Tools and Integrations

• Query Interfaces

• Clickhouse cli client

• ClickHouse HTTP Server

• JetBrains DataGrip (commercial)

• Visualization

• Grafana

• Apache SuperSet

• Looker

• Redash

• Tabix

• A lot more, and the list keeps growing

Storage

• ClickHouse supports many table engine
types

• For local/native storage, MergeTree is the
workhorse table engine

• Other specialized MergeTree
implementations exist for specific purposes

• ClickHouse also has table engines to support
external storage in S3 or HDFS.

What you can store

• Data Types

• Integer: (U)Int8, (U)Int16, (U)Int32, (U)Int64, Int128, (U)Int256

• Floating Point - Float32, Float64

• Fixed Point - Decimal32, Decimal64

• Boolean

• Strings - String, FixedString

• Date - Date, DateTime, DateTime64

• Arrays, Tuples, Maps, and Enums

• Nulls are supported

Encodings and Compression

• Each column in a ClickHouse table can have different

encoding and compression schemes.

• Encodings and Compression can be used together for

further storage efficiency gains.

• No need to normalize your data

Column Encodings

• Delta and DoubleDelta

• encodes deltas

• Gorilla

• encodes delta from a mean

• T64

• auto sizing Int

LowCardinality()

• Auto-Enum column

• Not only does this increase storage efficiency

but provides a performance boost as well.

• Compression can be enabled on top this,

further reducing storage.

Column Compression

• LZ4, LZ4HC and ZSTD column compression are
supported out of the box

• LZ4 is the default works well for most data after
encoding

• Overall table compression will be similar to that
of gzipped flat files on most CDR related
datasets I’ve seen

Common Telco Data
Column Compression Ratios

name type compression_codec compressed uncompressed compress_ratio bytes_per_row

orig_call_id String CODEC(ZSTD(1)) 68.76 GiB 251.40 GiB 27.35% 11.00

called String CODEC(ZSTD(1)) 23.24 GiB 75.04 GiB 30.97% 3.72

calling String CODEC(ZSTD(1)) 21.66 GiB 75.04 GiB 28.86% 3.46

cust_rate Decimal CODEC(LZ4) 19.66 GiB 56.28 GiB 34.93% 3.14

src_ip LC(String) CODEC(LZ4) 6.28 GiB 6.27 GiB 100.16% 1.00

cust_rounded_dur UInt32 CODEC(T64, LZ4) 2.26 GiB 25.01 GiB 9.05% 0.36

vendor_rate Decimal CODEC(LZ4) 15.04 GiB 56.28 GiB 26.72% 2.40

cld_lrn LC(String) CODEC(LZ4) 11.12 GiB 13.08 GiB 85.01% 1.78

cld_ocn LC(String) CODEC(LZ4) 8.26 GiB 12.52 GiB 65.97% 1.32

cust_carrier_id UInt64 CODEC(T64, LZ4) 6.93 GiB 50.03 GiB 13.84% 1.11

cld_lata LC(String) CODEC(LZ4) 6.02 GiB 6.27 GiB 96.13% 0.96

cld_state LC(String) CODEC(LZ4) 5.75 GiB 6.27 GiB 91.71% 0.92

cust_cost Decimal(16,8) CODEC(LZ4) 5.42 GiB 56.28 GiB 9.64% 0.87

vendor_cost Decimal(16,8) CODEC(LZ4) 5.27 GiB 56.28 GiB 9.36% 0.84

orig_carrier_name LC(String) CODEC(LZ4) 4.98 GiB 6.27 GiB 79.40% 0.80

pdd_ms UInt32 CODEC(T64, LZ4) 4.43 GiB 25.01 GiB 17.70% 0.71

release_reason LC(String) CODEC(LZ4) 4.11 GiB 6.27 GiB 65.66% 0.66

cld_category LC(String) CODEC(LZ4) 3.65 GiB 6.27 GiB 58.24% 0.58

bill_dur UInt32 CODEC(LZ4) 3.60 GiB 25.01 GiB 14.38% 0.58

rate_ts UInt64 CODEC(DoubleDelta, LZ4) 1.11 GiB 50.03 GiB 2.23% 0.18

end_time DateTime64 Primary Key 330.13 MiB 50.03 GiB 0.64% 0.05

call_dir UInt8 CODEC(T64, LZ4) 318.88 MiB 6.25 GiB 4.98% 0.05

short_flag1 UInt8 CODEC(T64, LZ4) 286.67 MiB 6.25 GiB 4.48% 0.04

Table Partitioning

• MergeTree tables can have Partition Key specified to

enable table partitioning.

• You can drop, truncate, detach, and optimize individual

partition parts.

• Helper functions such as toYYYYMMDD(), toYYYYMM(),

and toYYYY() make partitioning by date simple

Primary Keys

• MergeTree tables can have a non-unique "primary key"

based on columns or expressions

• The PRIMARY KEY is a skip index that can be used to

significantly speed up queries with WHERE clauses

• Very space efficient, fits in memory

OpenSIPs acc table in ClickHouse

CREATE TABLE opensips.acc (

method LowCardinality(String),

from_tag String CODEC (ZSTD),

to_tag String CODEC (ZSTD),

callid String CODEC (ZSTD),

sip_code LowCardinality(String),

sip_reason LowCardinality(String),

time DateTime CODEC (DoubleDelta, LZ4),

duration UInt32 CODEC (T64, LZ4),

ms_duration UInt32 CODEC (T64, LZ4),

setuptime DateTime CODEC(DoubleDelta, LZ4),

created Nullable(DateTime) CODEC(DoubleDelta, LZ4)

) ENGINE = MergeTree() PRIMARY KEY (time) ORDER BY (time)

PARTITION BY toYYYYMM(time);

Skip Indexes

• Secondary data skipping indexes allow you to further
speed up queries containing WHERE clauses.

• Skip indexes don’t point to individual rows but give
ClickHouse hints to what data might exist in a block of
column data.

• Skip indexes are defined on a per column basis

Skip Index Types

• minmax – stores the minimum and maximum values of
a column or even expression

• set – stores a list of unique values in a column

• bloom_filter – General purpose bloom filter that can be
used on most column data types.

• tokenbf_v1 – Stores a bloom filter for tokens/strings
separated by a delimiter.

Skip Index Types, continued

• ngrambf_v1 – n-gram bloom filter

• Stores a n-gram bloom filter for n-grams/chunks of Strings, such

as “Str” and “ings”.

• Speeds up queries on String columns in WHERE clauses with

string operators such as equals, like, in, startsWith or endsWith.

• You specify the size of the n-gram bloom filter when you create

the index.

Integrating ClickHouse With Outside
Data Sources

• External Dictionaries

• Proxy tables

• Directly from SQL in an ad-hoc fashion

• Streaming from Kafka and RabbitMQ topics/queues

• As a replication client to Postgres or MySQL

Dictionaries

• Dictionaries can be created from tables, text sources, or external

database table engines

• These allow quick and easy lookups of meta data in SQL queries

• Dictionaries can be auto-refreshed at specified time intervals

CREATE DICTIONARY customer_data(

id UInt32,

name String)

PRIMARY KEY id

SOURCE(MYSQL(

port 3306

host 'localhost'

user 'user'

password 'password'

db 'rar'

table 'customer'

)) LAYOUT(HASHED()), LIFETIME(300);

SELECT

dictGetString(customer_data, 'name', cust_id) "customer_name",

calling,

called,

duration

FROM cdrs

WHERE call_time >= '2021-05-01 00:00:00'

Proxy Table Engines

• You can define proxy tables with the
external table engines

• These proxy tables can be queried like
normal tables from SQL within ClickHouse

CREATE TABLE customers

(

`customer_id` UInt32,

`customer_name` String,

`datecreated` Date,

`status` UInt32,

`balance` Float64

)

ENGINE = MySQL('127.0.0.1:3307', 'db_name', 'customers', 'user', 'password')

Ad-Hoc External Queries

• You can query external tables directly from SQL queries by
using a function for the table name in the SELECT FROM.

• Makes querying and joining data across multiple data
sources very simple

SELECT b.customer_name, SUM(duration)/60 "minutes", COUNT(DURATION) "attempts",
SUM(IF(duration>=0 or sip_code='200', 1, 0)) "completes" FROM acc a

LEFT OUTER JOIN (SELECT customer_name, customer_ip FROM
mysql('127.0.0.1', 'db_name', 'customers', 'user', 'pass')) b mysql() table engine

ON a.src_ip = b.customer_ip
GROUP BY b.customer_name;

Kafka and RabbitMQ Streaming

• Kafka and RabbitMQ table engines allow
ClickHouse to become a topic/queue
consumer

• MATERIALIZED VIEWs can be used to
automatically pull the data and insert it into
tables

CREATE TABLE kafka_event_stream (

timestamp DateTime64,

server_ip String,

event_type String,

status String,

response_ms UInt32

) ENGINE = Kafka('127.0.0.1:9092', 'event_topic', 'ch_1', 'CSV')

Materialized Views
• Materialized views can be used to summarize/transform data

from one table into another on an ongoing basis

• Can be combined with Kafka/RabbitMQ streams to insert
data into tables as it becomes available

• SummingMergeTree tables will automatically aggregate
columns, grouping by the order keys

CREATE MATERIALIZED VIEW mv_event_summary

TO event_summary_by_hour

AS SELECT

toStartOfHour(timestamp) event_hour,

server_ip,

event_type,

count(event_type) attempts,

sum(if(status='reject',1,0)) AS rejects

FROM kafka_event_stream

GROUP BY event_hour, server_ip, event_type

Other Interesting Query Features

• Json column data function

• Statistical Functions

• Window Functions

• Arrays, Tuples, and Maps

• CatBoost Integration

FULL OUTER JOINs

• Joins 2 record sets and show rows where data exists in
both, or just one dataset.

• A normal INNER JOIN will only show rows where data
exists in both record sets,

• LEFT/RIGHT OUTER JOIN will only show rows that exists
in both record sets or the LEFT/RIGHT record set.

ASOF JOINs

• ASOF JOINs allow you to match 2 record sets on keys

that might not be exact matches

• It will join on the closest match

SELECT a.call_date, a.orig_number, a.term_number, b.bill_dur vendor_dur, a.bill_dur-
vendor_dur “dur_diff”

FROM (SELECT call_date, orig_number, term_number, bill_dur FROM my_cdrs
WHERE call_date BETWEEN '2021-01-25 00:00:00' AND '2021-01-25 01:00:00') a

ASOF JOIN
(SELECT call_date, orig_number, term_number, bill_dur FROM vendor_cdrs
WHERE call_date BETWEEN '2021-01-25 00:00:00' AND '2021-01-25 01:00:00') b

ON a.orig_number = b.orig_number AND a.term_number = b.term_number
AND a.call_date <= b.call_date this is the inexact match

Bulk-loading Data

• Data can be bulk-loaded locally or remotely via the
clickhouse cli utility

• zcat acc.csv.gz | clickhouse client --host=127.0.0.1 --query=
"INSERT INTO cdrs.acc FORMAT CSV"

• Textual formats

• CSV, TSV, JSON.

• Binary formats

• CapnProto, Protobuf, Avro, Parquet, Arrow, or ORC

Long-term data maintenance

• The easiest way to purge data is to drop partitions. Partitions can also be

detached, and the data moved to a different location for archival.

• MergeTree tables can have a TTL clause defined to automatically drop

rows after a definable time period.

• ALTER TABLE cdrs.acc TTL req_date + toIntervalDay(14)

• UPDATEs

• ALTER TABLE cdrs.acc UPDATE rated = 0 WHERE time < ‘2021-03-01 00:00:00’

• DELETEs

• ALTER TABLE cdrs.acc DELETE WHERE time < ‘2021-03-01 00:00:00’

The Future

• Still under heavy development

• Seeing more and more integrations with
other software packages, open-source and
commercial

• I expect ClickHouse to commoditize the
column-store like MySQL/PostGres did for the
RDMS

