Tackling Big Telco Data
With ClickHouse

« Jonathan Abrams @ NexPath Networks

jon@nexpath.net

Who am I?

« Started out in telecom back in 2001

» Along with switching, background in software
development and database work

» Work with the switching, operations and financial
aspects of customers’ businesses

« Successfully migrated many customers to more
open, financially viable solutions

What is ClickHouse?

* ClickHouse is an open-source, high-performance
column-store database with a SQL front end

* Developed by Yandix

* Column-store storage layout is key to
ClickHouse’s performance

What ClickHouse is good at

 Storing lots of data

* Aggregate (OLAP) queries on large tables

e (Semi) Structured Data

* Time Series Data

Even More Good

Fast queries on reasonably powerful hardware

Decent performance on platter storage

Very flexible interacting with outside data sources

Replication and distributed queries

What is not so great

* OLTP
* No ACID

* Key-Value Store

wusans @ 0L glL AL I

* CDR/Event record storage for reporting and
analysis

 CDR/Event record archival
* Streaming and tabulating event

* SIP Capture Storage

Tools and Integrations

* Query Interfaces
« Clickhouse cli client
« ClickHouse HTTP Server
« JetBrains DataGrip (commercial)

 Visualization
« Grafana
Apache SuperSet
Looker
Redash
Tabix
A lot more, and the list keeps growing

Storage

* ClickHouse supports many table engine
types

* For local/native storage, MergeTree is the
workhorse table engine

* Other specialized MergeTree
implementations exist for specific purposes

* ClickHouse also has table engines to support
external storage in S3 or HDFS.

What you can store

* Data Types
* Integer: (U)Int8, (U)Int16, (U)Int32, (U)Int64, Int128, (U)Int256

Floating Point - Float32, Float64

Fixed Point - Decimal32, Decimal64

Boolean

Strings - String, FixedString

Date - Date, DateTime, DateTime64

* Arrays, Tuples, Maps, and Enums

* Nulls are supported

Encodings and Compression

e Each columnin a ClickHouse table can have different
encoding and compression schemes.

* Encodings and Compression can be used together for
further storage efficiency gains.

* No need to normalize your data

Column Encodings

e Delta and DoubleDelta

* encodes deltas

e Gorilla

* encodes delta from a mean

* T64

* auto sizing Int

LowCardinality

e Auto-Enum column

* Not only does this increase storage efficiency
but provides a performance boost as well.

 Compression can be enabled on top this,
further reducing storage.

Column Compression

e LZ4, LZAHC and ZSTD column compression are
supported out of the box

e LZ4 is the default works well for most data after
encoding

* Overall table compression will be similar to that
of gzipped flat files on most CDR related
datasets I've seen

i sl o ;.-‘;'
SR N i3 By
” Nk %0": T
- A5
} R N e €N X1

: { . Rt

Common Telco Data

Column Compression Ratios

name
orig_call_id

called

calling

cust_rate

src_ip
cust_rounded_dur
vendor_rate
cld_Irn

cld_ocn
cust_carrier_id
cld_lata

cld_state
cust_cost
vendor_cost
orig_carrier_name
pdd_ms
release_reason
cld_category
bill_dur

rate_ts

end_time

call_dir
short_flag1

type

String

String

String
Decimal
LC(String)
UInt32
Decimal
LC(String)
LC(String)
UInt64
LC(String)
LC(String)
Decimal(16,8)
Decimal(16,8)
LC(String)
UInt32
LC(String)
LC(String)
UInt32
Uint64
DateTime64
Uint8

UInt8

compression_codec

CODEC(ZSTD(1))
CODEC(ZSTD(1))
CODEC(ZSTD(1))
CODEC(LZ4)
CODEC(LZ4)
CODEC(T64,LZ4)
CODEC(LZ4)
CODEC(LZ4)
CODEC(LZ4)
CODEC(T64, LZ4)
CODEC(LZ4)
CODEC(LZ4)
CODEC(LZ4)
CODEC(LZ4)
CODEC(LZ4)
CODEC(T64, LZ4)
CODEC(LZ4)
CODEC(LZ4)
CODEC(LZ4)

CODEC(DoubleDelta, LZ4)

Primary Key
CODEC(T64,Lz4)
CODEC(T64, Lz4)

compressed
68.76 GiB
23.24 GiB
21.66 GiB
19.66 GiB
6.28 GiB
2.26 GiB
15.04 GiB
11.12 GiB
8.26 GiB
6.93 GiB
6.02 GiB
5.75 GiB
5.42 GiB
5.27 GiB
4.98 GiB
4.43 GiB
411GiB
3.65 GiB
3.60 GiB
1.11GiB
330.13 MiB
318.88 MiB
286.67 MiB

uncompressed
25140 GiB

75.04 GiB
75.04 GiB
56.28 GiB
6.27 GiB
25.01GiB
56.28 GiB
13.08 GiB
12.52 GiB
50.03 GiB
6.27 GiB
6.27 GiB
56.28 GiB
56.28 GiB
6.27 GiB
25.01GiB
6.27 GiB
6.27 GiB
25.01GiB
50.03 GiB
50.03 GiB
6.25 GiB
6.25 GiB

27.35%
30.97%
28.86%
34.93%
100.16%
9.05%
26.72%
85.01%
65.97%
13.84%
96.13%
91.71%
9.64%
9.36%
79.40%
17.70%
65.66%
58.24%
14.38%
2.23%
0.64%
4.98%
4.48%

compress_ratio bytes_per_row

11.00
3.72
3.46
3.14
1.00
0.36
2.40
1.78
1.32
1.1
0.96
0.92
0.87
0.84
0.80
0.7
0.66
0.58
0.58
0.18
0.05
0.05

0.04

Table Partitioning

* MergeTree tables can have Partition Key specified to
enable table partitioning.

* You can drop, truncate, detach, and optimize individual
partition parts.

* Helper functions such as toYYYYMMDD(), toYYYYMM(),
and toYYYY() make partitioning by date simple

Primary Keys

* MergeTree tables can have a non-unique "primary key" | N 9
based on columns or expressions A

* The PRIMARY KEY is a skip index that can be used to
significantly speed up queries with WHERE clauses

* Very space efficient, fits in memory

OpenSIPs acc table in ClickHouse

CREATE TABLE opensips.acc (

method LowCardinality(String),

from_tag String CODEC (ZSTD),

to_tag String CODEC (ZSTD),

callid String CODEC (ZSTD),

sip_code LowCardinality(String),

sip_reason LowCardinality(String),

time DateTime CODEC (DoubleDelta, LZ4),

duration UInt32 CODEC (T64, LZ4),

ms_duration UInt32 CODEC (T64, LZ4),

setuptime DateTime CODEC(DoubleDelta, LZ4),

created Nullable(DateTime) CODEC(DoubleDelta, LZ4)
) ENGINE = MergeTree() PRIMARY KEY (time) ORDER BY (time)

PARTITION BY toYYYYMM(time);

Skip Indexes

» Secondary data skipping indexes allow you to further
speed up queries containing WHERE clauses.

» Skip indexes don’t point to individual rows but give
ClickHouse hints to what data might exist in a block of
column data.

e Skip indexes are defined on a per column basis

Skip Index Types

* minmax — stores the minimum and maximum values of
a column or even expression

e set — stores a list of unique values in a column

bloom_filter — General purpose bloom filter that can be
used on most column data types.

tokenbf v1 — Stores a bloom filter for tokens/strings
separated by a delimiter.

Skip Index Types, continued
N 7R

* ngrambf _v1 — n-gram bloom filter “" ' ’” Iy [I

 Stores a n-gram bloom filter for n-grams/chunks of Strings, such [:
L g

string operators such as equals, like, in, startsWith or endsWith. f % II l I l ll I I !

* You specify the size of the n-gram bloom filter when you create

the index. c 8y "l\"(’[[l'

as “Str” and “ings”.

S()[l\l

* Speeds up queries on String columns in WHERE clauses with

—

_"‘

Integrating ClickHouse With Outside
Data Sources

External Dictionaries

Proxy tables

Directly from SQL in an ad-hoc fashion

Streaming from Kafka and RabbitMQ topics/queues

As a replication client to Postgres or MySQL

Dictionaries

* Dictionaries can be created from tables, text sources, or external
database table engines

* These allow quick and easy lookups of meta data in SQL queries

* Dictionaries can be auto-refreshed at specified time intervals

CREATE DICTIONARY customer_data(

id UInt32,

name String) SELECT
PRIMARY KEY id dictGetString(customer_data, 'name’, cust_id) "customer_name",
SOURCE(MYSQL(calling,

port 3306 called,

host 'localhost’ duration

user 'user' FROM cdrs

password 'password' WHERE call_time >= '2021-05-01 00:00:00'

db 'rar’

table 'customer’
)) LAYOUT(HASHED()), LIFETIME(300);

Proxy Table Engines

* You can define proxy tables with the
external table engines

* These proxy tables can be queried like
normal tables from SQL within ClickHouse

CREATE TABLE customers
(
“customer _id" UInt32,
‘customer_name” String,
“datecreated” Date,
“status” UInt32,
“balance” Float64

)
ENGINE = MySQL('127.0.0.1:3307', 'db_name"', ‘customers', 'user’, 'password’)

Ad-Hoc External Queries

* You can query external tables directly from SQL queries by
using a function for the table name in the SELECT FROM.

* Makes querying and joining data across multiple data
sources very simple

SELECT b.customer_name, SUM(duration)/60 "minutes", COUNT(DURATION) "attempts",
SUM(IF(duration>=0 or sip_code="200", 1, 0)) "completes" FROM acc a

LEFT OUTER JOIN (SELECT customer_name, customer_ip FROM
mysql('127.0.0.1', 'db_name', 'customers’, 'user’, 'pass')) b € mysql() table engine

ON a.src_ip = b.customer _ip

GROUP BY b.customer_name;

Kafka and RabbitMQ Streaming

« Kafka and RabbitMQ table engines allow
ClickHouse to become a topic/queue
consumer

- MATERIALIZED VIEWSs can be used to
augf)matically pull the data and insert it into
tables

CREATE TABLE kafka_event_stream (

timestamp DateTime64,

server_ip String,

event_type String,

status String,

response_ms UInt32

) ENGINE = Kafka('127.0.0.1:9092', 'event_topic', 'ch_1', 'CSV')

Materialized Views

* Materialized views can be used to summarize/transform data
from one table into another on an ongoing basis

« Can be combined with Kafka/RabbitMQ streams to insert
data into tables as it becomes available

« SummingMergeTree tables will automatically aggregate
columns, grouping by the order keys

CREATE MATERIALIZED VIEW mv_event_summary
TO event_summary_by hour
AS SELECT
toStartOfHour(timestamp) event_hour,
server_ip,
event_type,
count(event_type) attempts,
sum(if(status="reject’,1,0)) AS rejects
FROM kafka_event_stream
GROUP BY event_hour, server_ip, event_type

Other Interesting Query Features

* Json column data function

Statistical Functions

Window Functions

Arrays, Tuples, and Maps

CatBoost Integration

FULL OUTER JOINs

e Joins 2 record sets and show rows where data exists in
both, or just one dataset.

* A normal INNER JOIN will only show rows where data
exists in both record sets,

* LEFT/RIGHT OUTER JOIN will only show rows that exists
in both record sets or the LEFT/RIGHT record set.

ASOF JOINs

e ASOF JOINs allow you to match 2 record sets on keys
that might not be exact matches

* It will join on the closest match

SELECT a.call_date, a.orig_number, a.term_number, b.bill_dur vendor_dur, a.bill_dur-
vendor_dur “dur_diff”
FROM (SELECT call_date, orig_number, term_number, bill_dur FROM my_cdrs
WHERE call_date BETWEEN '2021-01-25 00:00:00' AND '2021-01-25 01:00:00') a
ASOF JOIN
(SELECT call_date, orig_number, term_number, bill_dur FROM vendor_cdrs
WHERE call_date BETWEEN '2021-01-25 00:00:00' AND '2021-01-25 01:00:00') b
ON a.orig_number = b.orig_number AND a.term_number = b.term_number
AND a.call_date <= b.call_date < this is the inexact match

Bulk-loading Data

e Data can be bulk-loaded locally or remotely via the
clickhouse cli utility

 zcat acc.csv.gz | clickhouse client --host=127.0.0.1 --query=
"INSERT INTO cdrs.acc FORMAT CSV"

 Textual formats
* CSV, TSV, JSON.

* Binary formats

e CapnProto, Protobuf, Avro, Parquet, Arrow, or ORC

Long-term data maintenance

* The easiest way to purge data is to drop partitions. Partitions can also be
detached, and the data moved to a different location for archival.

* MergeTree tables can have a TTL clause defined to automatically drop
rows after a definable time period.

« ALTER TABLE cdrs.acc TTL req_date + tolntervalDay(14)

* UPDATEs
« ALTER TABLE cdrs.acc UPDATE rated = 0 WHERE time < ‘2021-03-01 00:00:00’

* DELETEs
- ALTER TABLE cdrs.acc DELETE WHERE time < 2021-03-01 00:00:00’

The Future

* Still under heavy development

* Seeing more and more integrations with

other software packages, open-source and
commercial

| expect ClickHouse to commoditize the

column-store like MySQL/PostGres did for the
RDMS

