
RTC-TIE
Threat intelligence Exchange

Alexandr Dubovikov
Senior Voice Architect and Designer at QSC AG

Lead Developer HOMER
Founder SIPCAPTURE
Co-Founder, CTO QXIP BV

RTC Threat Intelligence Exchange

Fraud Attacks.
The problem needs no introduction - “Bad Guys” are out there diligently and perpetually probing all of our exposed VoIP
Infrastructure 24/7/365 looking for gaps, accounts, routes they can exploit for criminal profit at the expense of your business.

Most operators can defend themselves - sometimes spectacularly (like QSC or SipGate) other times… not really!

On a daily basis millions of packets and cycles are wasted by scanners and as millions of real Euros are burned by Fraud

Smaller users are the most affected, left no “default” way to protect their setups full of defaults and exploitable configs.
John Doe deserves a default blacklist option for his little home PBX, and so does Johnny Operator 5 for all its honest customers!

RTC Threat Intelligence Exchange

Hello? Solutions Already Exist.
Meh. Not Really.

Classic Blacklists are boring and old fashioned, often working in a localized, non coordinated fashion.
Parsing cdrs and logs feeding fail2ban and local only iptables rules is not flexible and hardly distributed, if ever

Local Only detections are selfish and wasteful method only temporarily addressing the real problem.

Imagine if any confirmed Attack source ban on a federated network could automatically propagate to your systems

Post Mortem detections via CDR are futile, ongoing breaches cannot be detected or halted fast enough.

Everything is real-time, including Fraud. Attack Patterns, Botnets and Scanners can and should be dealt with as such.

Existing Blacklists are mostly controlled by private companies without transparency, not Communities.

RTC Threat Intelligence Exchange

Alternatives.
Running a Local, Private Blacklist

Using tools such as fail2ban and others, block your own attackers across your network (IF you can detect them)

Pro: Cheap to run
Cons: Hard to distributed

Depend on plain logs or CDRs

Using an External, Public Blacklist

There are a few public options available options out there such as VoIPBL and others available to use

Pro: Lazy Factor 100%
Cons: Controlled by private entities. Who’s who?

Lack for native community Integrations

RTC Threat Intelligence Exchange

Open Gap. Open Source.
The OSS VoIP ecosystem is notorious for providing innovative solutions working in harmony with each other, very often
surpassing solutions provided by gigantic vendors with the direct drive of great Humans, behind every good innovation.

This is sadly not yet the case for Voice Fraud Prevention, where defense is sometimes considered accessory - until it’s too late.

This is where idea for an Distributed Blacklist for exchanging Real-Time Communication focused Threat Intelligence is born

The propositive key features of our project should be:

● Real-Time, just like our communications
● Distributed, without complex configurations
● Offline-First, always ready for its primary goal
● Open-Source & Community Maintained, Trusted
● Backed and Fueled by reputable Operators sharing detections

RTC Threat Intelligence Exchange

Getting our Hands Dirty: CaCheep.
In order to quickly prototype the concept, we’ve slashed together CACHEEP - a smart LRU-Cache providing the basic

functionality and building blocks we needed to create and demonstrate our offline-first, distributed blacklist concept.

A simple REST API to program self-expiring entries, optionally stored/distributed via pluggable backends (Redis, GunDB) and
consumable by clients via DNS/ENUM or plain REST to drive routing decisions, correlation pairings and much more.

Behind the scenes, data is seamlessly replicated over to clients via aggregation servers or p2p via websocket connections,
guaranteeing a consistent offline-first consumption of data and fast propagation of events for nodes to use and enforce.

RTC Threat Intelligence Exchange

Distributed.
Cacheep can currently use Redis as backend to store and further distribute its data.

When looking for a disruptive way to approach our challenge, we stumbled upon GUN.

GUN is a realtime, distributed, offline-first, graph database engine able to sustain 15M+ ops/sec focusing on merge conflicts,
creating an eventually consistent state across all synchronized machines. Being a graph cache-database, any data structure can
be used as traditional tables with relations, document oriented trees, or tons of circular references making.

Every time a client receives data, gun makes a local copy for speed and efficiency, meaning that your most crucial data is backed
up on every peer that uses it, making loss of important information nearly impossible as well as guaranteeing always-on access.

Soon Cacheep & its clients will see GunDB taking a central role - keep an eye on cross-developments at gundb.io

RTC Threat Intelligence Exchange

RTC Threat Intelligence Exchange

CACHEEP
GUNDB

D
N
S

CACHEEP
GUNDB

CACHEEP
GUNDB

GUNDB

DB

GUNDB

DB

REST DNS DNS DNSREST REST REST

RTC Threat Intelligence Exchange

CACHEEP
GUNDB

D
N
S

CACHEEP
GUNDB

CACHEEP
GUNDB

GUNDB

DB

GUNDB

DB

REST DNS DNS DNSREST REST REST

Instant Use Cases:
Cacheep can immediately be applied to develop solutions for the following scenarios:

❏ Real-Time Distributed Blacklisting
❏ IP Blocks
❏ E164 Destination / Prefix Blocks

❏ On-Demand Location & Teardown of ongoing Fraud Calls
❏ Number portability Cache or Redirect service
❏ CDR & Session Correlation

❏ … You Name it!

RTC Threat Intelligence Exchange

Inferno:

RTC Threat Intelligence Exchange

Inferno: Nine circles of Hell
Important to know that we can provide different blacklisted baskets/levels (BLL):

BlacklistLevel01.domain.com = Sinner, Vicious.
Reported by 3 authorization users. Maximum stay 12 hours

BlacklistLevel02.domain.com = Sinner, Vicious.
Reported by 5 authorization users ans was minimum 2 times in BLL01. TTL = 1 day

BlacklistLevel02.domain.com = Sinner, Vicious.
Reported by 15 authorization users and was minimum 3 times in BLL03. TTL = 3 day

...
BlacklistLevel09.domain.com = Sinner, Vicious.

Permanent Lock. Only repentance.

RTC Threat Intelligence Exchange

Lock Me, Amadeus.
Here’s a quick example to set self-expiring Locks using the generic REST API and instant querying from DNS/ENUM clients:

RTC Threat Intelligence Exchange

Block Prefix for 60 seconds

curl http://127.0.0.1:3000/api/set/4416/true/60000

Block IP for 60 seconds

curl http://127.0.0.1:3000/api/set/10.0.0.99/true/60000

ENUM e.164 Lookup

dig -t NAPTR 0.0.6.9.2.3.6.1.4.4.e164.arpa @127.0.0.1

REST e.164 Lookup

curl http://127.0.0.1:3000/api/get/4416

DNS IP Lookup

dig -t A 10.0.0.99.blacklist.xx.com @127.0.0.1

REST IP Lookup

curl http://127.0.0.1:3000/api/get/10.0.0.99

Valid locks will be instantly available for all of our LB/Proxy/B2BUA elements to use and query via REST API or using ENUM.
Here’s a quick OpenSIPS example to check if our destination has been found in our local or distributed BlackList:

API Lookup

ENUM Lookup

RTC Threat Intelligence Exchange

if(enum_query()) {

 # Blacklist Entry found!

 xlog("ENUM - blacklist entry found: $rU") ;

 route(kill) ;

}

if (rest_get("http://127.0.0.1/api/get/$rU", "$var(reason)", "$var(ct)", "$var(rcode)")) {

if ($var(reason) != $null) {

 xlog("Call blocked with reason: $var(reason)\n");

 send_reply("403", "Forbidden");

 exit;

}

}

Show us some Action!
Let’s see how we can natively provision & integrate our prototype with the Big Four VoIP platforms:

❏ OpenSIPS
❏ Kamailio
❏ Freeswitch
❏ Asterisk

RTC Threat Intelligence Exchange

 if (is_method("REGISTER | INVITE")) {
 if (rest_get("http://blacklist.xx.com:3001/api/get/$si", "$var(response)")) {
 $json(result) := $var(response);

$var(req) = "blacklist.blocked.completed,service=opensips,region=us-west value=1 "+$Ts+"000000000";
if (!rest_post("http://blacklist.xx.com:8186/write", "$var(req)", ,"$var(body)", "$var(ct)", "$var(rcode)")) {

xlog("Error code $var(rcode) in HTTP POST!\n");
}
if($json(result/blocked) == "true") {
 send_reply("403","You have been banned");
 $var(req) = "blacklist.blocked.completed,service=opensips,region=us-west value=1 "+$Ts+"000000000";
 if (!rest_post("http://blacklist.xx.com:8186/write", "$var(req)", ,"$var(body)", "$var(ct)", "$var(rcode)")) {

xlog("Error code $var(rcode) in HTTP POST!\n");
 } exit;
} else {
 $var(req) = "blacklist.ublocked.request,service=opensips,region=us-west value=1 "+$Ts+"000000000";
 if (!rest_post("http://blacklist.xx.com:8186/write", "$var(req)", ,"$var(body)", "$var(ct)", "$var(rcode)")) {

xlog("Error code $var(rcode) in HTTP POST!\n");
}
if($ua =~ "friendly-scanner|sipcli|VoIP SIP") {

$var(req) = "blacklist.block.request,service=opensips,region=us-west value=1 "+$Ts+"000000000";
if (!rest_post("http://blacklist.xx.com:8186/write", "$var(req)", ,"$var(body)", "$var(ct)", "$var(rcode)")) {

 xlog("Error code $var(rcode) in HTTP POST!\n");
}

 }
 }
 };
 xlog("L_ERR", "DO LOOKUP: $si, $var(response)");
}

RTC Threat Intelligence Exchange

Strategy:
Unfortunately Opensips doesn’t have any custom
dns lookup, therefore we will use rest api client.
First we check $si (source ip)
In the json response we check if the destination
is blocked. If so, we respond with SIP 403 and
perform statistics update. If not blocked, we
check $ua and if it’s friendly scanner we block it
using the rest api

Modules:
loadmodule "rest_client.so"
loadmodule "enum.so" #In case ENUM block
loadmodule "json.so"

 if (is_method("REGISTER") || from_uri==myself) {
 $var(dns) = $si + ".blacklist.botauro.com";
 if (!dns_int_match_ip("$var(dns)", "$si")) {
 xlog("L_ALERT", "ip address not associated with hostname: $var(dns)\n");
 statsd_set("blacklist.nonblocked.counter,service=kamailio,region=de-west", 1);
 if($ua =~ "friendly-scanner|sipcli|VoIP SIP") {
 xlog("L_ALERT", "Lets add the ip for block!\n");
 $http_req(body) = "{'r_uri':'" + $rU + "', 'message':'" + $ua + "'}";
 http_async_query("http://blacklist.xx.com:3001/api/set/$si/6000000", "HTTP_REPLY");
 statsd_set("blacklist.sendblockrequest,service=kamailio,region=de-west", 1);
 if(geoip_match("$si", "src")) {
 xlog("FIRST WE BLOCKED SIP message [$si] from: $gip(src=>cc)\n");
 statsd_incr("blacklist.blockedcountry.first,country="+$gip(src=>cc)+",service=kamailio,region=de-west");
 }
 }
 }
 else {
 if(geoip_match("$si", "src")) {
 xlog("REGISTER|INVITE SIP message [$si] from: $gip(src=>cc)\n");
 }
 statsd_set("blacklist.blocked.completed,service=kamailio,region=de-west", 1);
 if(geoip_match("$si", "src")) {
 xlog("WE BLOCKED SIP message [$si] from: $gip(src=>cc)\n");
 statsd_incr("blacklist.blockedcountry.permanent,country="+$gip(src=>cc)+",service=kamailio,region=de-west");
 }
 xlog("L_ALERT","DOMAIN BLOCKED: $var(dns)");
 sl_send_reply("503","You are blocked");
 exit;
 }
 }

RTC Threat Intelligence Exchange

Kamailio has a custom DNS lookup allowing use
of dnsmasq application or custom DNS root zone.
We perform a lookup to our dns/cacheep if the
destination is blocked. If the IP is an offender and
non yet blocked we can do so using an http async
query.

loadmodule "ipops.so" #DNS lookup
loadmodule "http_async_client.so" #API
loadmodule "geoip.so" #Lookup for banned IP
loadmodule "statsd.so #Statistics

FreeSwitch

 <extension name="announce">
 <condition field="destination_number" expression="^6000$">
 <action application="curl" data="http://blacklist.xx.com:3001/api/get/${network_addr} json" inline="true" />
 <action application="set" data="blocked=${system echo '${curl_response_data}' | jq -r '.body' | jq -r '.blocked' | tr -d '\n'}" inline="true"/>
 <condition field="blocked" expression="^true$">
 <anti-action application="respond" data="503"/>
 </condition>
 <condition field="blocked" expression="^false$">
 <action application="set" data="curl_response_data=" inline="true"/>
 <action application="info"/>
 <action application="set" data="rtcp_audio_interval_msec=5000"/>
 <action application="answer"/>
 <action application="sleep" data="2000"/>
 <action application="ivr" data="demo_ivr"/>
 </condition>
 </condition>
 </extension>

RTC Threat Intelligence Exchange

Unfortunately enum is not an option in FS.

To achieve the functionality, we use internal
mod_curl and function “curl”.

We can also check UA and block it if needed.

Modules:
mod_curl

Asterisk

exten => _X.,1,Set(CURL_RESULT=${CURL(blacklist.xx.com:3001/api/get/${SIPCHANINFO(peerip)})})
same => n,Set(result=${JSONELEMENT(CURL_RESULT,blocked)})
same => n,GotoIf($["${result}" = "1"]?block:process)
same => n(block),Hangup
same => n(process),Answer
same => n,Hangup

RTC Threat Intelligence Exchange

Same interface: CURL and check json response.

Not needed extra modules, but be sure you have
curl installed.

RTC Threat Intelligence Exchange

Nothing makes sense without statistics and detailed metrics
to understand how our systems operate and react.

...

Statistics!

Killing Fraud. No Mercy.
Let’s say one of our federated nodes detects and Bans an Attacker - any new call will be instantly blocked - that’s great!

But what happens to any established and ongoing fraud call$?

Quite too often, Nothing - They keep vacuuming money!

That’s sad and potentially very, very expensive, too.

This is where our Teardown module comes into play, inspired by the same tools our attackers use against our users.
SIP is has a few weaknesses, and if criminals take advantage of them, so should we for defense! Say good BYE to Fraud!

By leveraging HEPIC integration, Cacheep can query for any established calls by an IP or User/Destination, rebuild the key
sessions parameters and forge a perfectly valid BYE Teardown message for both directions, stopping the leak right there.

RTC Threat Intelligence Exchange

Let’s Make it Happen.
The key concept is already welcomed by the leading Projects in our ecosystem and the technical proposals

are already gaining some interesting concepts, but in order for this to succeed, We need YOU, too!

Developer? We need your expertise and ideas to make this baby fly high.

Architect? We need your help to scale this idea beyond the horizon

Security Expert? Let’s make this unbreakable and keep it unpoisoned

Operator? We need your support and backing to empower this ecosystem

OSS Politician? Help us by making this initiative known to potential Angel backers.

Not a Technical guy? We’ll need help with arranging, coordinating, documenting.

Interested? Contact us today: (needs mailing-list or gitter)

RTC Threat Intelligence Exchange

Thank you!

RTC Threat Intelligence Exchange

