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My experience

● Designing multi-tenant business VoIP platforms 
since 2009

● Lead developer for Ratetel's Virtual PBX and 
trunking platform

● First certified OpenSIPS professional
● Ratetel is the US sales partner for OpenSIPS 

Solutions



Advantages of using OpenSIPS

● Highly scalable
● Stable code base
● Can handle tens of thousands of registrations
● Central point for presence and billing
● Dynamic routing
● Packet mangling to alter packets for custom  

purposes
● Highly available



Advantages of using Freeswitch

● Supports more concurrent calls than most other 
open source PBXs (asterisk)

● Rich media handling capabilities
● Many different config methods (flat xml, lua, 

dynamic xml, many others)
● Stable code base and long time affinity with 

Opensips
● So many class 5 features, even ones you didn't 

think you needed



What is RabbitMQ?

● RabbitMQ is an open source message broker 
software (sometimes called message-oriented 
middleware) that implements the Advanced 
Message Queuing Protocol (AMQP). 

● The RabbitMQ server is written in the Erlang 
programming language and is built on the Open 
Telecom Platform framework for clustering and 
failover.



Advantages of using RabbitMQ

● Robust messaging for applications
● Easy to use
● Runs on all major operating systems
● Supports a huge number of developer platforms
● Open source and commercially supported
● Reliable queuing
● Topic-based publish-and-subscribe messaging
● Flexible routing, transactions, and security. 



Traditional CDR problems

● Class 4 and Class 5 are usually separate 
systems from a CDR perspective.

● There are 2 sets of CDRs generated with 
different data, but most importantly different 
call-ids.

● Class 5 events during a call are not naturally 
logged to CDR, especially call transfers and 
dtmf input.

● Complex routing plans make it more 
problematic
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Event Methodology

● Events can be consumed from the RabbitMQ 
server by any choice of clients available

● OpenSIPS is responsible for information related 
to call's start and end time, as well as marking 
billable time at the start of media 

● Freeswitch will append call information based 
on events occurring in the CLASS 5 layer such 
as where the call is routed, when it's parked, 
put on hold, transferred, etc



Who's handling what...

OpenSIPS

Freeswitch

●Registrations
●Ip Authentication
●Carrier facing
●nat

●Call routing
●Voicemail
●Ivr
●Ring groups
●Queues
●conferences



Opensips configuration 

● loadmodule "event_rabbitmq.so"
● librabbitmq-dev required

● modparam("event_rabbitmq", "heartbeat", 3)
● Enables heartbeat support for the AMQP 

communication. If no heartbeat from server is 
received within the specified interval, the socket is 
automatically closed.

●  Prevents OpenSIPS from blocking while waiting for 
a response from a dead rabbitmq-server. The value 
represents the heartbit interval in seconds



Opensips Configuration

● modparam("event_rabbitmq", "sync_mode", 0)
● 0 = default (async non-blocking)
● 1 = synchronous (opensips waits for response) 

● subscribe_event("E_RABBITMQ_EVENT", 
"rabbitmq:127.0.0.1/queue");

● raise_event("E_RABBITMQ_EVENT");
● The maximum length of a datagram event is 

16384 bytes  



Raising events in OpenSIPS

● Inject variables like CALLID, SRC, DST, 
starttime into avp variables

● raise_event("E_SIP_MESSAGE", $avp(attrs), 
$avp(vals))

● Calling this function on INVITE will send the first 
event to open a CDR record

● Calling this function on reply route will signal 
the start of media (billable time)

● Calling this function on BYE or CANCEL will 
signal the close of the CDR record



Opensips Configuration

● Because new call-ids will be generated when 
calls are sent to CLASS 5, we must find a way 
to bind them to CLASS 4.

● append_hf("X-ORIGINAL-CALLID: $ci\r\n");
● All calls delivered to CLASS 5 will have this 

callid to reference as it's made available as a 
variable in all events sent from Freeswitch



Freeswitch Configuration

●  autoload_configs/modules.conf.xml
● Add <load module="mod_amqp"/>

● autoload_configs/amqp.conf.xml 
<profile name="default">

  <connections>

    <connection name="primary">

     <param name="hostname" value="localhost"/>

     <param name="virtualhost" value="/"/>

     <param name="username" value="guest"/>

     <param name="password" value="guest"/>

     <param name="port" value="5672"/>

     <param name="heartbeat" value="3"/>

   </connection>



Freeswitch Events

● Customize the Event Filter by editing the 
following lines. The default captures channel 
create and destroy, fs heartbeat, and dtmf.

<!-- <param name="eventFilter" value="SWITCH_EVENT_ALL"/> -->

<param name="event_filter" 
value="SWITCH_EVENT_CHANNEL_CREATE,SWITCH_EVENT_CHANNEL_DESTROY,SWITCH_EVENT_HEA
RTBEAT,SWITCH_EVENT_DTMF,SWITCH_EVENT_CHANNEL_HOLD,SWITCH_EVENT_CHANNEL_UNHOLD,
SWITCH_EVENT_CHANNEL_PARK,SWITCH_EVENT_CHANNEL_UNPARK,SWITCH_EVENT_CHANNEL_STAT
E,SWITCH_EVENT_CHANNEL_ANSWER,SWITCH_EVENT_CHANNEL_CALL_STATE"/>



Freeswitch Events

● Bind the original call-id to new channels
● Use events to follow call activity in realtime

● <action application="set" data="sip_h_X-
ORIGINAL-CALLID=${sip_h_X-ORIGINAL-
CALLID}"/>

● Track answers, hangups, transfers for basic 
CDR creation

● Enhance by injecting call data like DTMF, call 
parking/unparking, call hold/unhold, recording 
start/stop, CHANSPY events

●



Freeswitch Events

● CHANNEL_ANSWER
● Will provide all channel variables including custom 

sip headers in the event
● First bind on original callid

● CHANNEL_BRIDGE
● Used to detect transfers as it provides all channel 

variables for both legs to be bridged

● CHANNEL_HANGUP_COMPLETE
● Used to detect call hangup, all variables and sip 

headers available



Other Events in Opensips

● Can be used to track a multitude of other 
events in OpenSIPS as needed.

● Examples:
● Alerts when counters are breached
● Alerts when gateways become 

available/unavailable
● Alerts when users register/unregister
● Alerts when calls fail 
● Alerts on attacks such as floods, etc



Other Events in Freeswitch

● Like in OpenSIPS, can be used to track many 
different kinds of events.

● Examples:
● Conference rooms and user actions within
● Voicemail box info after exiting mod_voicemail
● Pin failures for call authorizations
● Sending system status
● Sending status of apps executed by dialplan



Questions?

Thank You!

Alex Goulis
a.g@ratetel.com
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