
Building CLASS 5 CDRs with OpenSIPS and
RabbitMQ

Alex Goulis

OpenSIPS Summit Amsterdam 2016

My experience

● Designing multi-tenant business VoIP platforms
since 2009

● Lead developer for Ratetel's Virtual PBX and
trunking platform

● First certified OpenSIPS professional
● Ratetel is the US sales partner for OpenSIPS

Solutions

Advantages of using OpenSIPS

● Highly scalable
● Stable code base
● Can handle tens of thousands of registrations
● Central point for presence and billing
● Dynamic routing
● Packet mangling to alter packets for custom

purposes
● Highly available

Advantages of using Freeswitch

● Supports more concurrent calls than most other
open source PBXs (asterisk)

● Rich media handling capabilities
● Many different config methods (flat xml, lua,

dynamic xml, many others)
● Stable code base and long time affinity with

Opensips
● So many class 5 features, even ones you didn't

think you needed

What is RabbitMQ?

● RabbitMQ is an open source message broker
software (sometimes called message-oriented
middleware) that implements the Advanced
Message Queuing Protocol (AMQP).

● The RabbitMQ server is written in the Erlang
programming language and is built on the Open
Telecom Platform framework for clustering and
failover.

Advantages of using RabbitMQ

● Robust messaging for applications
● Easy to use
● Runs on all major operating systems
● Supports a huge number of developer platforms
● Open source and commercially supported
● Reliable queuing
● Topic-based publish-and-subscribe messaging
● Flexible routing, transactions, and security.

Traditional CDR problems

● Class 4 and Class 5 are usually separate
systems from a CDR perspective.

● There are 2 sets of CDRs generated with
different data, but most importantly different
call-ids.

● Class 5 events during a call are not naturally
logged to CDR, especially call transfers and
dtmf input.

● Complex routing plans make it more
problematic

Network diagram

Opensips

Rabbit
Consumer

Mysql

Fs

Supplies call start/answer/end times for billing

Store data in mysql

Web
 Server

App
 ServerSupplies events such as call

state, routing and dtmf

Make live call info available to web or app servers

Event Methodology

● Events can be consumed from the RabbitMQ
server by any choice of clients available

● OpenSIPS is responsible for information related
to call's start and end time, as well as marking
billable time at the start of media

● Freeswitch will append call information based
on events occurring in the CLASS 5 layer such
as where the call is routed, when it's parked,
put on hold, transferred, etc

Who's handling what...

OpenSIPS

Freeswitch

●Registrations
●Ip Authentication
●Carrier facing
●nat

●Call routing
●Voicemail
●Ivr
●Ring groups
●Queues
●conferences

Opensips configuration

● loadmodule "event_rabbitmq.so"
● librabbitmq-dev required

● modparam("event_rabbitmq", "heartbeat", 3)
● Enables heartbeat support for the AMQP

communication. If no heartbeat from server is
received within the specified interval, the socket is
automatically closed.

● Prevents OpenSIPS from blocking while waiting for
a response from a dead rabbitmq-server. The value
represents the heartbit interval in seconds

Opensips Configuration

● modparam("event_rabbitmq", "sync_mode", 0)
● 0 = default (async non-blocking)
● 1 = synchronous (opensips waits for response)

● subscribe_event("E_RABBITMQ_EVENT",
"rabbitmq:127.0.0.1/queue");

● raise_event("E_RABBITMQ_EVENT");
● The maximum length of a datagram event is

16384 bytes

Raising events in OpenSIPS

● Inject variables like CALLID, SRC, DST,
starttime into avp variables

● raise_event("E_SIP_MESSAGE", $avp(attrs),
$avp(vals))

● Calling this function on INVITE will send the first
event to open a CDR record

● Calling this function on reply route will signal
the start of media (billable time)

● Calling this function on BYE or CANCEL will
signal the close of the CDR record

Opensips Configuration

● Because new call-ids will be generated when
calls are sent to CLASS 5, we must find a way
to bind them to CLASS 4.

● append_hf("X-ORIGINAL-CALLID: $ci\r\n");
● All calls delivered to CLASS 5 will have this

callid to reference as it's made available as a
variable in all events sent from Freeswitch

Freeswitch Configuration

● autoload_configs/modules.conf.xml
● Add <load module="mod_amqp"/>

● autoload_configs/amqp.conf.xml
<profile name="default">

 <connections>

 <connection name="primary">

 <param name="hostname" value="localhost"/>

 <param name="virtualhost" value="/"/>

 <param name="username" value="guest"/>

 <param name="password" value="guest"/>

 <param name="port" value="5672"/>

 <param name="heartbeat" value="3"/>

 </connection>

Freeswitch Events

● Customize the Event Filter by editing the
following lines. The default captures channel
create and destroy, fs heartbeat, and dtmf.

<!-- <param name="eventFilter" value="SWITCH_EVENT_ALL"/> -->

<param name="event_filter"
value="SWITCH_EVENT_CHANNEL_CREATE,SWITCH_EVENT_CHANNEL_DESTROY,SWITCH_EVENT_HEA
RTBEAT,SWITCH_EVENT_DTMF,SWITCH_EVENT_CHANNEL_HOLD,SWITCH_EVENT_CHANNEL_UNHOLD,
SWITCH_EVENT_CHANNEL_PARK,SWITCH_EVENT_CHANNEL_UNPARK,SWITCH_EVENT_CHANNEL_STAT
E,SWITCH_EVENT_CHANNEL_ANSWER,SWITCH_EVENT_CHANNEL_CALL_STATE"/>

Freeswitch Events

● Bind the original call-id to new channels
● Use events to follow call activity in realtime

● <action application="set" data="sip_h_X-
ORIGINAL-CALLID=${sip_h_X-ORIGINAL-
CALLID}"/>

● Track answers, hangups, transfers for basic
CDR creation

● Enhance by injecting call data like DTMF, call
parking/unparking, call hold/unhold, recording
start/stop, CHANSPY events

●

Freeswitch Events

● CHANNEL_ANSWER
● Will provide all channel variables including custom

sip headers in the event
● First bind on original callid

● CHANNEL_BRIDGE
● Used to detect transfers as it provides all channel

variables for both legs to be bridged

● CHANNEL_HANGUP_COMPLETE
● Used to detect call hangup, all variables and sip

headers available

Other Events in Opensips

● Can be used to track a multitude of other
events in OpenSIPS as needed.

● Examples:
● Alerts when counters are breached
● Alerts when gateways become

available/unavailable
● Alerts when users register/unregister
● Alerts when calls fail
● Alerts on attacks such as floods, etc

Other Events in Freeswitch

● Like in OpenSIPS, can be used to track many
different kinds of events.

● Examples:
● Conference rooms and user actions within
● Voicemail box info after exiting mod_voicemail
● Pin failures for call authorizations
● Sending system status
● Sending status of apps executed by dialplan

Questions?

Thank You!

Alex Goulis
a.g@ratetel.com

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21

