

OpenSIPS as an IP-PBX replacement in a multi-sites
environment

13 May 2015

About Us

About Us

 Be IP
● Founded in 2008 from NOVACOM (2003)
● Commercializes an IP PBX product based on OpenSIPS & Asterisk
● Approximatively 15k users of our products in the BeLux

 Damien Sandras
● Created FOSDEM in 2000
● Created Ekiga in 2001 and Ekiga.net in 2005
● Created NOVACOM in 2003

 Steve Frécinaux
● Joined NOVACOM in 2007

AWIPH

AWIPH

 Governmental Agency
● 700 users
● 1 main site
● 7 remote offices

 Specific Requirements
● High-Availability
● All Offices must be reachable at any time
● Presence, Instant Messaging and Exchange Integration are

important

AWIPH

Architecture

Architecture: Requirements

 Our servers are still mostly on premises
 This means we have different constraints than

cloud or ITSP operators do:
● 10-2000 users, but really 10-100 most of the time
● Hardware is “expensive”

– We have very few servers available

Architecture: Requirements

 This means we have different constraints than
cloud or ITSP operators do (cont'd):

● Bandwidth is rare
– 1 Mbps inter-site links are common

– QoS guarantees are usually lame

● Maintenance is “expensive”
– Lots of servers to manage relative to the amount of users

– Few economies of scale to benefit from

Architecture: Requirements

 This means we have different constraints than
cloud or ITSP operators do (cont'd):

● People expect traditional PBX features to be available
– Directed Pick-up

– Group Pick-up

– Pick-up notifications

– Boss / Secretary features

– …

● Different brands implement different features with different
RFC's

Architecture

 A few words about our typical architecture
● 2 “main servers” with

– OpenSIPS 1.8 and Asterisk 1.4

– A shared and redundant MySQL database used by OpenSIPS

– A bunch of other services

● Several “satellite servers” with
– OpenSIPS 1.8 alone

– A local MySQL database for the OpenSIPS data.

– The local copy of active registrations is sync'ed every few minutes

– Nothing else shared with the other servers

● DNS SRV is doing the rest

Architecture: Asterisk

 Why Asterisk?
● Historical reasons

– We come from an Asterisk-only situation (back in 2003)

– And Asterisk is still handling every single call

● Some features are currently holding us back
– Call history and statistics

– Voice applications
● Voicemail, IVRs, queues, …
● Call recording
● Group pick-up

– RTP stream management, for trunks and NAT
● Alleviate routing issues (somewhat like rtpproxy)
● Can make transcoding easier, while making codec management harder

Architecture: Opensips

 Why OpenSIPS?
● Provides nice extra features

– Forking across several devices

– Actually working presence and dialog-infos

– TCP, SIP MESSAGE / MSRP, Called Number Display

● Alterations possible at the SIP level
– Asterisk manages calls, not SIP sessions and messages

– failure_route, reply_route

– e.g.: dynamic, reINVITE-aware call counting

● Works around Asterisk deficiencies
● More and more OpenSIPS, less and less Asterisk

Important Features

Important Features: Presence

 In the PBX world, presence means supporting
“Busy Lamp Fields”

● On the Phone, Free, Ringing (with directed pick-up)

 In the UC world, presence means “user
availability”

● Available, Away, Busy, …

 We need to support both modes / both worlds

Important Features: Presence

 SIP defines two types of events
● Dialog-info

– Several bug fixes and much debugging required

● Presence
– RFC 4480 - RPID/Rich Presence Extensions to PIDF

● Presence Agent Implementation (or simulation)

● mix_dialog_presence

Important Features: Presence

 Specific requirements
● One unique presence state for several presence sources

– Most SIP implementations do not handle aggregated documents
very well

– Most Human Brain implementations do not understand aggregated
presence very well

● If calendar integration is enabled, its presence state must
“win”

● Calls need to be routed according the presence state

Important Features: Presence

 With specific requirements (cont'd)
● Presence needs to be shared among multiple SIP servers

– Clients can be split 50/50 across the servers

● Phones implement different things … differently:
– SNOM phones support PUBLISH but not RFC 4480 (old im: tag)

– Polycom phones do not support PUBLISH

– Sofpthones usually support more things

Important Features: Presence

 Our implementation
● Uses pua_usrloc

– For SIP UAs that do not support PUBLISH

● Uses mi_xmlrpc and pua_mi

– For web-published or calendar presence status or unaware devices

● Uses cachedb_sql

– To store the unique presence state

● Adds 3 settings to OpenSIPS
– merge → Use merge instead of aggregation

– im_to_rpidf → Converts im: into Rich PIDF

– merge_primary_source → Specifies what is the primary source

Important Features: Presence

 How does the merge algorithm work?
● If the presence document contains

– dialog-info related information → this presence state wins

– pua_usrloc generated information → this presence state is
considered as the least important one

● If the presence document contains
– presence information identified as originating from the primary

source → this presence state wins

● Otherwise
– the most recently PUBLISHed presence states wins

● The result is NOTIFYed when appropriate to SUBSCRIBERs
and stored in cacheDB for reuse in the call routing

Important Features: Multi-Sites

 Several sites with several network profiles
 OpenSIPS

● Rejects registrations from unknown networks
● Handles call counting and call limits

– Using dialog profiles

– From the first initial INVITE to the final BYE, including reINVITEs

Important Features: Redundancy

 DNS-based redundancy
● Each of our servers embed a DNS server
● This DNS server is authoritative on a “tel” DNS zone:

– ; A record to the main server, for dumb endpoints
tel.beip.be. IN A 172.30.42.1

– ; NAPTR record
tel.beip.be. IN NAPTR 10 10 "S" "SIP+D2T" "" _sip._tcp.tel.beip.be.

– ; SRV records to be used by SIP endpoints
_sip._tcp.tel.beip.be. IN SRV 10 50 5060 laurel.tel.beip.be.
_sip._tcp.tel.beip.be. IN SRV 20 50 5060 hardy.tel.beip.be.

– ; Individual servers
laurel.tel.beip.be. IN A 172.30.42.11
hardy.tel.beip.be. IN A 172.30.42.12

Important Features: Redundancy

 Each remote site has a LifeGUARD server
 LifeGUARD servers are really dumb

● No Asterisk instance → No local voice applications
– No call pickup, no queues, no intercom, no music on hold, no

voicemail, ...

– Call transfer are supported.

● As few dynamic knowledge as possible
– No presence, pretty much only registrations

– Configurable redirections are not honored (busy, no answer, etc)

Important Features: Redundancy

 LifeGUARD servers are really dumb (cont'd)
● Overly simplified call routing

– Direct desk phone numbers only

– Any unknown number is redirected to a local operator

(Unknown means “not a direct desk phone number”)

– Only a single (local) trunk is supported

● Embeds a DNS server and a redundant DHCP server
– But still, no provisioning!

– Please don't reboot your desk phone.

Important Features: Redundancy

 This server is made available through DNS:
● Extra DNS records for each LifeGUARD server

– _sip._tcp.tel.beip.be. IN SRV 30 50 5060 lg-mons.tel.beip.be.

– lg-mons.tel.beip.be. IN A 192.196.203.2

● We make use of bind9 views.
– At most one LifeGUARD server shows up in the DNS answer,

depending on the source IP of the request.

– The local server has a local copy of the DNS zone, to avoid timing
out on DNS queries.

Important Features: Redundancy

 Sharing data among servers is difficult
● It must be kept in sync between the servers
● It consumes bandwidth
● It can generate conflicts and break

 So we'd really like to share nothing
● But we need to know about registrations and stuff
● LifeGUARDs only know the bare minimum

 MySQL replication is prone to failure
● Custom script synchronizes registrations periodically with the

master servers, both ways
● OpenSIPS Binary Interface looks very promising

Important Features: Redundancy

 Choosing the transport protocol
● Most of the time, SIP uses UDP as its transport layer
● We chose to use TCP instead, though

– With UDP, some phones (Snom) tend to hang forever while waiting for
an hypothetical SIP responses in this scenario

– TCP handshake guarantees a (somewhat) quick failure if a server is
unreachable

● TCP support in OpenSIPS sometimes made our lives difficult
– Bad performance on slow network lines due to blocking connections

● we had to increase the number of processes a lot

– Patch which disables the restriction on shared NOTIFYes
● we need to be able to open a TCP connection if there isn't one already

More Features

 Other features handled by OpenSIPS
● Direct Call Pick-up
● Caller ID Name
● Call Forwarding (internal vs external calls)

– On busy (on the phone)

– On offline

– On no answer

– Depending on the presence state

● Callback-on-busy
● Distinctive Rings

More Features

 Other features handled by OpenSIPS (cont'd)
● Cellphone integration (in terms of BLFs)
● Asterisk related

– Asterisk failures

– Problems due to multiple Asterisk instances
● Consultative transfer with one call on one server, the other call on the

other server
● Group pick-up

● Instant Messaging
– MESSAGE

– MSRP

Conclusion : The Future

The Future

 Main Goal
● Get rid of Asterisk when & where possible

 Short Term TODO
● Migrate to a more recent OpenSIPS release

– Use the new events framework for our Call Events feature

– Use the new binary interface to get rid of the MySQL redundancy
● Presence will be one difficult point

– Implement WebRTC

The Future

 Short TODO (cont'd)
● Move more features from Asterisk to OpenSIPS

– CDR handling

– Call Recording handling

– Codec management

– Implement group pickup in OpenSIPS

● Share more infrastructure among cloud customers
– We started with an “on premises” solution

– Multi-domain

– Routing data partitioning

 See you next year!

Questions?

Présentation générale

Be IP Confidential
© Be IP, 2012 – All rights reserved

	Diapo 1
	Diapo 2
	Diapo 3
	Diapo 4
	Diapo 5
	Diapo 6
	Diapo 7
	Diapo 8
	Diapo 9
	Diapo 10
	Diapo 11
	Diapo 12
	Diapo 13
	Diapo 14
	Diapo 15
	Diapo 16
	Diapo 17
	Diapo 18
	Diapo 19
	Diapo 20
	Diapo 21
	Diapo 22
	Diapo 23
	Diapo 24
	Diapo 25
	Diapo 26
	Diapo 27
	Diapo 28
	Diapo 29
	Diapo 30
	Diapo 31
	Diapo 32
	Diapo 33
	Diapo 34

