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About Us

 Be IP
● Founded in 2008 from NOVACOM (2003)
● Commercializes an IP PBX product based on OpenSIPS & Asterisk
● Approximatively 15k users of our products in the BeLux

 Damien Sandras
● Created FOSDEM in 2000
● Created Ekiga in 2001 and Ekiga.net in 2005
● Created NOVACOM in 2003

 Steve Frécinaux
● Joined NOVACOM in 2007
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 Governmental Agency
● 700 users
● 1 main site
● 7 remote offices

 Specific Requirements
● High-Availability
● All Offices must be reachable at any time
● Presence, Instant Messaging and Exchange Integration are 

important
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Architecture



 

Architecture: Requirements

 Our servers are still mostly on premises
 This means we have different constraints than 

cloud or ITSP operators do:
● 10-2000 users, but really 10-100 most of the time
● Hardware is “expensive”

– We have very few servers available



 

Architecture: Requirements

 This means we have different constraints than 
cloud or ITSP operators do (cont'd):

● Bandwidth is rare
– 1 Mbps inter-site links are common

– QoS guarantees are usually lame

● Maintenance is “expensive”
– Lots of servers to manage relative to the amount of users

– Few economies of scale to benefit from



 

Architecture: Requirements

 This means we have different constraints than 
cloud or ITSP operators do (cont'd):

● People expect traditional PBX features to be available
– Directed Pick-up

– Group Pick-up

– Pick-up notifications

– Boss / Secretary features

– …

● Different brands implement different features with different 
RFC's



 

Architecture

 A few words about our typical architecture
● 2 “main servers” with

– OpenSIPS 1.8 and Asterisk 1.4

– A shared and redundant MySQL database used by OpenSIPS

– A bunch of other services

● Several “satellite servers” with
– OpenSIPS 1.8 alone

– A local MySQL database for the OpenSIPS data.

– The local copy of active registrations is sync'ed every few minutes

– Nothing else shared with the other servers

● DNS SRV is doing the rest



 

Architecture: Asterisk

 Why Asterisk?
● Historical reasons

– We come from an Asterisk-only situation (back in 2003)

– And Asterisk is still handling every single call

● Some features are currently holding us back
– Call history and statistics

– Voice applications
● Voicemail, IVRs, queues, …
● Call recording
● Group pick-up

– RTP stream management, for trunks and NAT
● Alleviate routing issues (somewhat like rtpproxy)
● Can make transcoding easier, while making codec management harder



 

Architecture: Opensips

 Why OpenSIPS?
● Provides nice extra features

– Forking across several devices

– Actually working presence and dialog-infos

– TCP, SIP MESSAGE / MSRP, Called Number Display

● Alterations possible at the SIP level
– Asterisk manages calls, not SIP sessions and messages

– failure_route, reply_route

– e.g.: dynamic, reINVITE-aware call counting

● Works around Asterisk deficiencies
● More and more OpenSIPS, less and less Asterisk



 

Important Features



 

Important Features: Presence

 In the PBX world, presence means supporting 
“Busy Lamp Fields”

● On the Phone, Free, Ringing (with directed pick-up)

 In the UC world, presence means “user 
availability”

● Available, Away, Busy, …

 We need to support both modes / both worlds



 

Important Features: Presence

 SIP defines two types of events
● Dialog-info

– Several bug fixes and much debugging required

● Presence
– RFC 4480 - RPID/Rich Presence Extensions to PIDF

● Presence Agent Implementation (or simulation)

● mix_dialog_presence



 

Important Features: Presence

 Specific requirements
● One unique presence state for several presence sources

– Most SIP implementations do not handle aggregated documents 
very well

– Most Human Brain implementations do not understand aggregated 
presence very well

● If calendar integration is enabled, its presence state must 
“win”

● Calls need to be routed according the presence state



 

Important Features: Presence

 With specific requirements (cont'd)
● Presence needs to be shared among multiple SIP servers

– Clients can be split 50/50 across the servers

● Phones implement different things … differently:
– SNOM phones support PUBLISH but not RFC 4480 (old im: tag)

– Polycom phones do not support PUBLISH

– Sofpthones usually support more things



 

Important Features: Presence

 Our implementation
● Uses pua_usrloc

– For SIP UAs that do not support PUBLISH

● Uses mi_xmlrpc and pua_mi

– For web-published or calendar presence status or unaware devices

● Uses cachedb_sql

– To store the unique presence state

● Adds 3 settings to OpenSIPS
– merge → Use merge instead of aggregation

– im_to_rpidf → Converts im: into Rich PIDF

– merge_primary_source → Specifies what is the primary source



 

Important Features: Presence

 How does the merge algorithm work?
● If the presence document contains 

– dialog-info related information → this presence state wins

– pua_usrloc generated information → this presence state is 
considered as the least important one

● If the presence document contains
– presence information identified as originating from the primary 

source → this presence state wins

● Otherwise
– the most recently PUBLISHed presence states wins

● The result is NOTIFYed when appropriate to SUBSCRIBERs 
and stored in cacheDB for reuse in the call routing



 

Important Features: Multi-Sites

 Several sites with several network profiles
 OpenSIPS

● Rejects registrations from unknown networks
● Handles call counting and call limits

– Using dialog profiles

– From the first initial INVITE to the final BYE, including reINVITEs



 

Important Features: Redundancy

 DNS-based redundancy
● Each of our servers embed a DNS server
● This DNS server is authoritative on a “tel” DNS zone:

– ; A record to the main server, for dumb endpoints
tel.beip.be. IN A 172.30.42.1

– ; NAPTR record
tel.beip.be. IN NAPTR 10 10 "S" "SIP+D2T" "" _sip._tcp.tel.beip.be.

– ; SRV records to be used by SIP endpoints
_sip._tcp.tel.beip.be. IN SRV 10 50 5060 laurel.tel.beip.be.
_sip._tcp.tel.beip.be. IN SRV 20 50 5060 hardy.tel.beip.be.

– ; Individual servers
laurel.tel.beip.be. IN A 172.30.42.11
hardy.tel.beip.be. IN A 172.30.42.12



 

Important Features: Redundancy

 Each remote site has a LifeGUARD server
 LifeGUARD servers are really dumb

● No Asterisk instance → No local voice applications
– No call pickup, no queues, no intercom, no music on hold, no 

voicemail, ...

– Call transfer are supported.

● As few dynamic knowledge as possible
– No presence, pretty much only registrations

– Configurable redirections are not honored (busy, no answer, etc)



 

Important Features: Redundancy

 LifeGUARD servers are really dumb (cont'd)
● Overly simplified call routing

– Direct desk phone numbers only

– Any unknown number is redirected to a local operator

(Unknown means “not a direct desk phone number”)

– Only a single (local) trunk is supported

● Embeds a DNS server and a redundant DHCP server
– But still, no provisioning!

– Please don't reboot your desk phone.



 

Important Features: Redundancy

 This server is made available through DNS:
● Extra DNS records for each LifeGUARD server

– _sip._tcp.tel.beip.be. IN SRV 30 50 5060 lg-mons.tel.beip.be.

– lg-mons.tel.beip.be. IN A 192.196.203.2

● We make use of bind9 views.
– At most one LifeGUARD server shows up in the DNS answer, 

depending on the source IP of the request.

– The local server has a local copy of the DNS zone, to avoid timing 
out on DNS queries.



 

Important Features: Redundancy

 Sharing data among servers is difficult
● It must be kept in sync between the servers
● It consumes bandwidth
● It can generate conflicts and break

 So we'd really like to share nothing
● But we need to know about registrations and stuff
● LifeGUARDs only know the bare minimum

 MySQL replication is prone to failure
● Custom script synchronizes registrations periodically with the 

master servers, both ways
● OpenSIPS Binary Interface looks very promising



 

Important Features: Redundancy

 Choosing the transport protocol
● Most of the time, SIP uses UDP as its transport layer
● We chose to use TCP instead, though

– With UDP, some phones (Snom) tend to hang forever while waiting for 
an hypothetical SIP responses in this scenario

– TCP handshake guarantees a (somewhat) quick failure if a server is 
unreachable

● TCP support in OpenSIPS sometimes made our lives difficult
– Bad performance on slow network lines due to blocking connections

● we had to increase the number of processes a lot

– Patch which disables the restriction on shared NOTIFYes
● we need to be able to open a TCP connection if there isn't one already



 

More Features

 Other features handled by OpenSIPS
● Direct Call Pick-up
● Caller ID Name
● Call Forwarding (internal vs external calls)

– On busy (on the phone)

– On offline

– On no answer

– Depending on the presence state

● Callback-on-busy
● Distinctive Rings



 

More Features

 Other features handled by OpenSIPS (cont'd)
● Cellphone integration (in terms of BLFs)
● Asterisk related

– Asterisk failures

– Problems due to multiple Asterisk instances
● Consultative transfer with one call on one server, the other call on the 

other server
● Group pick-up

● Instant Messaging
– MESSAGE

– MSRP



 

Conclusion : The Future



 

The Future

 Main Goal
● Get rid of Asterisk when & where possible

 Short Term TODO
● Migrate to a more recent OpenSIPS release

– Use the new events framework for our Call Events feature

– Use the new binary interface to get rid of the MySQL redundancy
● Presence will be one difficult point

– Implement WebRTC



 

The Future

 Short TODO (cont'd)
● Move more features from Asterisk to OpenSIPS

– CDR handling

– Call Recording handling

– Codec management

– Implement group pickup in OpenSIPS

● Share more infrastructure among cloud customers
– We started with an “on premises” solution

– Multi-domain

– Routing data partitioning

 See you next year!



 

Questions?



 

Présentation générale
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