

OpenSIPS as an IP-PBX replacement in a multi-sites environment

13 May 2015

beip?

About Us

About Us

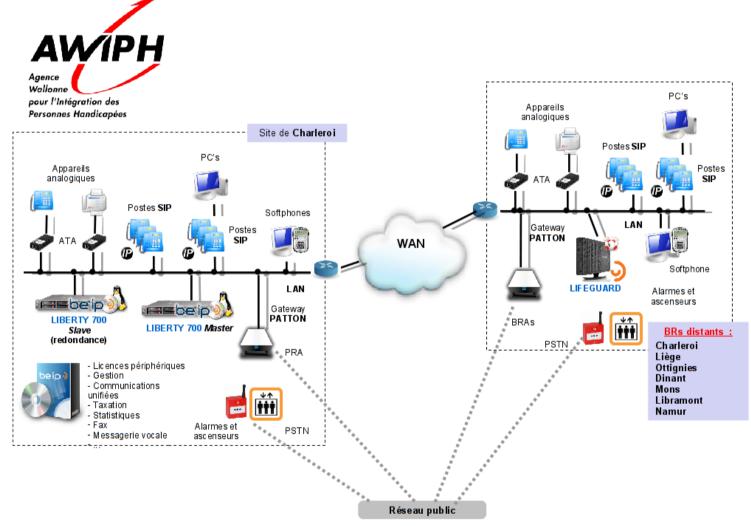
Be IP

- Founded in 2008 from NOVACOM (2003)
- Commercializes an IP PBX product based on OpenSIPS & Asterisk
- Approximatively 15k users of our products in the BeLux

Damien Sandras

- Created FOSDEM in 2000
- Created Ekiga in 2001 and Ekiga.net in 2005
- Created NOVACOM in 2003
- Steve Frécinaux
 - Joined NOVACOM in 2007

beip?



Governmental Agency

- 700 users
- 1 main site
- 7 remote offices
- Specific Requirements
 - High-Availability
 - All Offices must be reachable at any time
 - Presence, Instant Messaging and Exchange Integration are important

AWIPH

be ip 🦻

Schéma général projet téléphonie – A.W.I.P.H. Document établi par Damien Sandras Date : 16/08/2011

beipy

Architecture

- Our servers are still mostly on premises
- This means we have different constraints than cloud or ITSP operators do:

- 10-2000 users, but really 10-100 most of the time
- Hardware is "expensive"
 - We have very few servers available

 This means we have different constraints than cloud or ITSP operators do (cont'd):

- Bandwidth is rare
 - 1 Mbps inter-site links are common
 - QoS guarantees are usually lame
- Maintenance is "expensive"
 - Lots of servers to manage relative to the amount of users
 - Few economies of scale to benefit from

 This means we have different constraints than cloud or ITSP operators do (cont'd):

be ip 🦻

- People expect traditional PBX features to be available
 - Directed Pick-up
 - Group Pick-up
 - Pick-up notifications
 - Boss / Secretary features

- ...

 Different brands implement different features with different RFC's

• A few words about our typical architecture

- 2 "main servers" with
 - OpenSIPS 1.8 and Asterisk 1.4
 - A shared and redundant MySQL database used by OpenSIPS
 - A bunch of other services
- Several "satellite servers" with
 - OpenSIPS 1.8 alone
 - A local MySQL database for the OpenSIPS data.
 - The local copy of active registrations is syncled every few minutes
 - Nothing else shared with the other servers
- DNS SRV is doing the rest

Why Asterisk?

- Historical reasons
 - We come from an Asterisk-only situation (back in 2003)
 - And Asterisk is still handling every single call
- Some features are currently holding us back
 - Call history and statistics
 - Voice applications
 - Voicemail, IVRs, queues, ...
 - Call recording
 - Group pick-up
 - RTP stream management, for trunks and NAT
 - Alleviate routing issues (somewhat like rtpproxy)
 - Can make transcoding easier, while making codec management harder

be ip 🎐

Architecture: Opensips

Why OpenSIPS?

- Provides nice extra features
 - Forking across several devices
 - Actually working presence and dialog-infos
 - TCP, SIP MESSAGE / MSRP, Called Number Display
- Alterations possible at the SIP level
 - Asterisk manages calls, not SIP sessions and messages

- failure_route, reply_route
- e.g.: dynamic, reINVITE-aware call counting
- Works around Asterisk deficiencies
- More and more OpenSIPS, less and less Asterisk

beip?

Important Features

 In the PBX world, presence means supporting "Busy Lamp Fields"

- On the Phone, Free, Ringing (with directed pick-up)
- In the UC world, presence means "user availability"
 - Available, Away, Busy, ...
- We need to support both modes / both worlds

SIP defines two types of events

- Dialog-info
 - Several bug fixes and much debugging required
- Presence
 - RFC 4480 RPID/Rich Presence Extensions to PIDF

be ip 🎐

- Presence Agent Implementation (or simulation)
- mix_dialog_presence

Specific requirements

- One unique presence state for several presence sources
 - Most SIP implementations do not handle aggregated documents very well

- Most Human Brain implementations do not understand aggregated presence very well
- If calendar integration is enabled, its presence state must "win"
- Calls need to be routed according the presence state

With specific requirements (cont'd)

Presence needs to be shared among multiple SIP servers

- Clients can be split 50/50 across the servers
- Phones implement different things ... differently:
 - SNOM phones support PUBLISH but not RFC 4480 (old im: tag)
 - Polycom phones do not support PUBLISH
 - Sofpthones usually support more things

Our implementation

- Uses pua_usrloc
 - For SIP UAs that do not support PUBLISH
- Uses mi_xmlrpc and pua_mi •
 - For web-published or calendar presence status or unaware devices
- Uses cachedb_sql •
 - To store the unique presence state
- Adds 3 settings to OpenSIPS
 - \rightarrow Use merge instead of aggregation merge
 - im_to_rpidf

- → Converts im: into Rich PIDF
- merge_primary_source → **Specifies what is the primary source**

- How does the merge algorithm work?
 - If the presence document contains
 - *dialog-info* related information \rightarrow this presence state wins
 - pua_usrloc generated information → this presence state is considered as the least important one

- If the presence document contains
 - presence information identified as originating from the primary source \rightarrow this presence state wins
- Otherwise
 - the most recently PUBLISHed presence states wins
- The result is NOTIFYed when appropriate to SUBSCRIBERs and stored in cacheDB for reuse in the call routing

Important Features: Multi-Sites

- Several sites with several network profiles
- OpenSIPS
 - Rejects registrations from unknown networks
 - Handles call counting and call limits
 - Using dialog profiles
 - From the first initial INVITE to the final BYE, including reINVITEs

be ip 🎐

DNS-based redundancy

- Each of our servers embed a DNS server
- This DNS server is authoritative on a "tel" DNS zone:
 - ; A record to the main server, for dumb endpoints tel.beip.be. IN A 172.30.42.1
 - ; NAPTR record tel.beip.be. IN NAPTR 10 10 "S" "SIP+D2T" "" _sip._tcp.tel.beip.be.

- ; SRV records to be used by SIP endpoints
 _sip._tcp.tel.beip.be. IN SRV 10 50 5060 laurel.tel.beip.be.
 _sip._tcp.tel.beip.be. IN SRV 20 50 5060 hardy.tel.beip.be.
- *; Individual servers* laurel.tel.beip.be. IN A 172.30.42.11 hardy.tel.beip.be. IN A 172.30.42.12

- Each remote site has a LifeGUARD server
- LifeGUARD servers are really dumb
 - No Asterisk instance → No local voice applications
 - No call pickup, no queues, no intercom, no music on hold, no voicemail, ...

- Call transfer are supported.
- As few dynamic knowledge as possible
 - No presence, pretty much only registrations
 - Configurable redirections are not honored (busy, no answer, etc)

LifeGUARD servers are really dumb (cont'd)

- Overly simplified call routing
 - Direct desk phone numbers only
 - Any unknown number is redirected to a local operator (Unknown means "not a direct desk phone number")
 - Only a single (local) trunk is supported
- Embeds a DNS server and a redundant DHCP server
 - But still, no provisioning!
 - Please don't reboot your desk phone.

This server is made available through DNS:

- Extra DNS records for each LifeGUARD server
 - __sip._tcp.tel.beip.be. IN SRV 30 50 5060 lg-mons.tel.beip.be.

be ip 🌛

- Ig-mons.tel.beip.be. IN A 192.196.203.2
- We make use of bind9 views.
 - At most one LifeGUARD server shows up in the DNS answer, depending on the source IP of the request.
 - The local server has a local copy of the DNS zone, to avoid timing out on DNS queries.

Important Features: Redundancy

- Sharing data among servers is difficult
 - It must be kept in sync between the servers
 - It consumes bandwidth
 - It can generate conflicts and break
- So we'd really like to share nothing
 - But we need to know about registrations and stuff
 - LifeGUARDs only know the bare minimum
- MySQL replication is prone to failure
 - Custom script synchronizes registrations periodically with the master servers, both ways

be ip 🦻

OpenSIPS Binary Interface looks very promising

- Choosing the transport protocol
 - Most of the time, SIP uses UDP as its transport layer
 - We chose to use TCP instead, though
 - With UDP, some phones (Snom) tend to hang forever while waiting for an hypothetical SIP responses in this scenario

- TCP handshake guarantees a (somewhat) quick failure if a server is unreachable
- TCP support in OpenSIPS sometimes made our lives difficult
 - Bad performance on slow network lines due to blocking connections
 - we had to increase the number of processes a lot
 - Patch which disables the restriction on shared NOTIFYes
 - we need to be able to open a TCP connection if there isn't one already

- Direct Call Pick-up
- Caller ID Name
- Call Forwarding (internal vs external calls)
 - On busy (on the phone)
 - On offline
 - On no answer
 - Depending on the presence state
- Callback-on-busy
- Distinctive Rings

- Other features handled by OpenSIPS (cont'd)
 - Cellphone integration (in terms of BLFs)
 - Asterisk related
 - Asterisk failures
 - Problems due to multiple Asterisk instances
 - Consultative transfer with one call on one server, the other call on the other server
 - Group pick-up
 - Instant Messaging
 - MESSAGE
 - MSRP

beipy

Conclusion : The Future

The Future

be ip 🦻

Main Goal

- Get rid of Asterisk when & where possible
- Short Term TODO
 - Migrate to a more recent OpenSIPS release
 - Use the new events framework for our Call Events feature
 - Use the new binary interface to get rid of the MySQL redundancy
 - Presence will be one difficult point
 - Implement WebRTC

The Future

Short TODO (cont'd)

- Move more features from Asterisk to OpenSIPS
 - CDR handling
 - Call Recording handling
 - Codec management
 - Implement group pickup in OpenSIPS
- Share more infrastructure among cloud customers
 - We started with an "on premises" solution
 - Multi-domain
 - Routing data partitioning
- See you next year!

beipy

Questions?

www.beip.be