Table of Contents
enable_stats
(integer)hash_size
(integer)log_profile_hash_size
(integer)rr_param
(string)default_timeout
(integer)dlg_extra_hdrs
(string)dlg_match_mode
(integer)db_url
(string)db_mode
(integer)db_update_period
(integer)options_ping_interval
(integer)reinvite_ping_interval
(integer)table_name
(string)call_id_column
(string)from_uri_column
(string)from_tag_column
(string)to_uri_column
(string)to_tag_column
(string)from_cseq_column
(string)to_cseq_column
(string)from_route_column
(string)to_route_column
(string)from_contact_column
(string)to_contact_column
(string)from_sock_column
(string)to_sock_column
(string)dlg_id_column
(string)state_column
(string)start_time_column
(string)timeout_column
(string)profiles_column
(string)vars_column
(string)sflags_column
(string)mflags_column
(string)flags_column
(string)profiles_with_value
(string)profiles_no_value
(string)db_flush_vals_profiles
(int)timer_bulk_del_no
(int)cachedb_url
(string)profile_value_prefix
(string)profile_no_value_prefix
(string)profile_size_prefix
(string)profile_timeout
(int)accept_replicated_dialogs
(int)replicate_dialogs_to
(int)accept_replicated_profiles
(int)replicate_profiles_to
(int)accept_replicated_profile_timeout
(int)auth_check
(int)replicate_profiles_buffer
(string)replicate_profiles_check
(string)replicate_profiles_timer
(string)replicate_profiles_expire
(string)create_dialog()
match_dialog([dlg_match_mode])
validate_dialog()
fix_route_dialog()
get_dialog_info(attr,var,key,key_val)
get_dialog_vals(names,vals,callid)
set_dlg_profile(profile,[value])
unset_dlg_profile(profile,[value])
is_in_profile(profile,[value])
get_profile_size(profile,[value],size)
set_dlg_flag(idx)
test_and_set_dlg_flag(idx, value)
reset_dlg_flag(idx)
is_dlg_flag_set(idx)
store_dlg_value(name,val)
fetch_dlg_value(name,pvar)
List of Tables
List of Examples
enable_stats
parameterhash_size
parameterhash_size
parameterrr_param
parameterdefault_timeout
parameterdlf_extra_hdrs
parameterdlg_match_mode
parameterdb_url
parameterdb_mode
parameterdb_update_period
parameteroptions_ping_interval
parameterreinvite_ping_interval
parametertable_name
parametercall_id_column
parameterfrom_uri_column
parameterfrom_tag_column
parameterto_uri_column
parameterto_tag_column
parameterfrom_cseq_column
parameterto_cseq_column
parameterfrom_route_column
parameterto_route_column
parameterfrom_contact_column
parameterto_contact_column
parameterfrom_sock_column
parameterto_sock_column
parameterdlg_id_column
parameterstate_column
parameterstart_time_column
parametertimeout_column
parameterprofiles_column
parametervars_column
parametersflags_column
parametermflags_column
parameterflags_column
parameterprofiles_with_value
parameterprofiles_no_value
parameterdb_flush_vals_profiles
parametertimer_bulk_del_no
parametercachedb_url
parameterprofile_value_prefix
parameterprofile_no_value_prefix
parameterprofile_size_prefix
parameterprofile_timeout
parameteraccept_replicated_dialogs
parameterreplicate_dialogs_to
parameteraccept_replicated_profiles
parameterreplicate_profiles_to
parameteraccept_replicated_profile_timeout
parameterauth_check
parameterreplicate_profiles_buffer
parameterreplicate_profiles_check
parameterreplicate_profiles_timer
parameterreplicate_profiles_expire
parametercreate_dialog()
usagematch_dialog()
usagevalidate_dialog()
usagefix_route_dialog()
usageget_dialog_info
usageget_dialog_vals
usageset_dlg_profile
usageunset_dlg_profile
usageis_in_profile
usageget_profile_size
usageset_dlg_flag
usagetest_and_set_dlg_flag
usagereset_dlg_flag
usageis_dlg_flag_set
usagestore_dlg_value
usagefetch_dlg_value
usageThe dialog module provides dialog awareness to the OpenSIPS proxy. Its functionality is to keep trace of the current dialogs, to offer information about them (like how many dialogs are active).
Aside tracking, the dialog module offers functionalities like flags and attributes per dialog (persistent data across dialog), dialog profiling and dialog termination (on timeout base or external triggered).
The module, via an internal API, also provide the foundation to build on top of it more complex dialog-based functionalities via other OpenSIPS modules.
To create the dialog associated to an initial request, you must call the create_dialog() function, with or without parameter..
The dialog is automatically destroyed when a “BYE” is
received. In case of no “BYE”, the dialog lifetime is
controlled via the default timeout (see “default_timeout”
- Section 1.6.5, “default_timeout
(integer)”) and custom timeout (see
“$DLG_timeout” - Section 1.10.8, “$DLG_timeout
”).
Dialog profiling is a mechanism that helps in classifying, sorting and keeping trace of certain types of dialogs, using whatever properties of the dialog (like caller, destination, type of calls, etc). Dialogs can be dynamically added in different (and several) profile tables - logically, each profile table can have a special meaning (like dialogs outside the domain, dialogs terminated to PSTN, etc).
There are two types of profiles:
with no value - a dialog simply belongs to a profile. (like outbound calls profile). There is no other additional information to describe the dialog's belonging to the profile;
with value - a dialog belongs to a profile having a certain value (like in caller profile, where the value is the caller ID). The belonging of the dialog to the profile is strictly related to the value.
A dialog can be added to multiple profiles in the same time.
Profiles are visible (at the moment) in the request route (for initial and sequential requests) and in the branch, failure and reply routes of the original request.
Dialog profiles can also be used in distributed systems, using the OpenSIPS CacheDB Interface. This feature allows you to share dialog profile information with multiple OpenSIPS instaces that use the same CacheDB backend. In order to do that, the cachedb_url parameter must be defined. Also, the profile must be marked as shared, by adding the '/s' suffix to the name of the profile in the profiles_with_value or profiles_no_value parameters.
Dialog replication is a mechanism used to mirror all dialog changes taking place in one OpenSIPS instance to one or more other different instances. The logic is simplified by using the core Binary Internal Interface to build and send the replication-related UDP packets.
The feature is especially useful when dealing with very large systems, where failover through a database backend is no longer feasible, due to the high amount of time required for the backup instance to load the dialog information stored in a typical dialog table by the crashed instance.
Configuring both receival and sending of dialog replication packets is trivial and can be done by using the accept_replicated_dialogs and replicate_dialogs_to parameters of the module. In addition to this, the module also exports several statistics regarding the number of replication packets sent/received.
Profiles replication can also be achieved using the accept_replicated_profiles and replicate_profiles_to parameters.
The following modules must be loaded before this module:
TM - Transaction module
RR - Record-Route module
If the statistics support should be enabled or not. Via statistic variables, the module provide information about the dialog processing. Set it to zero to disable or to non-zero to enable it.
Default value is “1 (enabled)”.
The size of the hash table internally used to keep the dialogs. A larger table is much faster but consumes more memory. The hash size must be a power of 2 number.
IMPORTANT: If dialogs' information should be stored in a database, a constant hash_size should be used, otherwise the restored process will not take place. If you really want to modify the hash_size you must delete all table's rows before restarting OpenSIPS.
Default value is “4096”.
The size of the hash table internally used to store profile->dialog associations. A larger table can provide more parallel operations but consumes more memory. The hash size is provided as the base 2 logarithm(e.g. log_profile_hash_size =4 means the table has 2^4 entries).
Default value is “4”.
Example 1.3. Set hash_size
parameter
... modparam("dialog", "log_profile_hash_size", 5) #set a table size of 32 ...
Name of the Record-Route parameter to be added with the dialog cookie. It is used for fast dialog matching of the sequential requests.
Default value is “did”.
The default dialog timeout (in seconds) if no custom one is set.
Default value is “43200 (12 hours)”.
A string containing the extra headers (full format, with EOH) to be added in the requests generated by the module (like BYEs).
Default value is “NULL”.
Example 1.6. Set dlf_extra_hdrs
parameter
... modparam("dialog", "dlg_extra_hdrs", "Hint: credit expired\r\n") ...
How the seqential requests should be matched against the known dialogs. The modes are a combination between matching based on a cookie (DID) stored as cookie in Record-Route header and the matching based on SIP elements (as in RFC3261).
The supported modes are:
0 - DID_ONLY - the match is done exclusively based on DID;
1 - DID_FALLBACK - the match is first tried based on DID and if not present, it will fallback to SIP matching;
2 - DID_NONE - the match is done exclusively based on SIP elements; no DID information is added in RR.
Default value is “0 (DID_ONLY)”.
If you want to store the information about the dialogs in a database a database url must be specified.
Default value is “mysql://opensips:opensipsrw@localhost/opensips”.
Example 1.8. Set db_url
parameter
... modparam("dialog", "db_url", "dbdriver://username:password@dbhost/dbname") ...
Describe how to push into the DB the dialogs' information from memory.
The supported modes are:
0 - NO_DB - the memory content is not flushed into DB;
1 - REALTIME - any dialog information changes will be reflected into the database immediately.
2 - DELAYED - the dialog information changes will be flushed into the DB periodically, based on a timer routine.
3 - SHUTDOWN - the dialog information will be flushed into DB only at shutdown - no runtime updates.
Default value is “0”.
The interval (seconds) at which to update dialogs' information if you chose to store the dialogs' info at a given interval. A too short interval will generate intensive database operations, a too large one will not notice short dialogs.
Default value is “60”.
The interval (seconds) at which OpenSIPS will generate in-dialog OPTIONS pings for one or both of the involved parties.
Default value is “30”.
Example 1.11. Set options_ping_interval
parameter
... modparam("dialog", "options_ping_interval", 20) ...
The interval (seconds) at which OpenSIPS will generate in-dialog Re-INVITE pings for one or both of the involved parties.
Important: the ping timeout detection is performed every time this interval ticks, not when the re-INVITE transaction times out! Consequently, please make sure that the timeouts for re-INVITE transactions (e.g. the "fr_timeout" modparam of the "tm" module or its $T_fr_timeout variable) are always lower than the value of this parameter! Failing to ensure this ordering of timeouts may possibly lead to re-INVITE pings never ending a disconnected dialog due to pings getting retried before getting a chance to properly time out.
Default value is “300”.
Example 1.12. Set reinvite_ping_interval
parameter
... modparam("dialog", "reinvite_ping_interval", 600) ...
If you want to store the information about the dialogs in a database a table name must be specified.
Default value is “dialog”.
The column's name in the database to store the dialogs' callid.
Default value is “callid”.
Example 1.14. Set call_id_column
parameter
... modparam("dialog", "call_id_column", "callid_c_name") ...
The column's name in the database to store the caller's sip address.
Default value is “from_uri”.
Example 1.15. Set from_uri_column
parameter
... modparam("dialog", "from_uri_column", "from_uri_c_name") ...
The column's name in the database to store the From tag from the Invite request.
Default value is “from_tag”.
Example 1.16. Set from_tag_column
parameter
... modparam("dialog", "from_tag_column", "from_tag_c_name") ...
The column's name in the database to store the calee's sip address.
Default value is “to_uri”.
Example 1.17. Set to_uri_column
parameter
... modparam("dialog", "to_uri_column", "to_uri_c_name") ...
The column's name in the database to store the To tag from the 200 OK response to the Invite request, if present.
Default value is “to_tag”.
Example 1.18. Set to_tag_column
parameter
... modparam("dialog", "to_tag_column", "to_tag_c_name") ...
The column's name in the database to store the cseq from caller side.
Default value is “caller_cseq”.
Example 1.19. Set from_cseq_column
parameter
... modparam("dialog", "from_cseq_column", "from_cseq_c_name") ...
The column's name in the database to store the cseq from callee side.
Default value is “callee_cseq”.
Example 1.20. Set to_cseq_column
parameter
... modparam("dialog", "to_cseq_column", "to_cseq_c_name") ...
The column's name in the database to store the route records from caller side (proxy to caller).
Default value is “caller_route_set”.
Example 1.21. Set from_route_column
parameter
... modparam("dialog", "from_route_column", "from_route_c_name") ...
The column's name in the database to store the route records from callee side (proxy to callee).
Default value is “callee_route_set”.
Example 1.22. Set to_route_column
parameter
... modparam("dialog", "to_route_column", "to_route_c_name") ...
The column's name in the database to store the caller's contact uri.
Default value is “caller_contact”.
Example 1.23. Set from_contact_column
parameter
... modparam("dialog", "from_contact_column", "from_contact_c_name") ...
The column's name in the database to store the callee's contact uri.
Default value is “callee_contact”.
Example 1.24. Set to_contact_column
parameter
... modparam("dialog", "to_contact_column", "to_contact_c_name") ...
The column's name in the database to store the information about the local interface receiving the traffic from caller.
Default value is “caller_sock”.
Example 1.25. Set from_sock_column
parameter
... modparam("dialog", "from_sock_column", "from_sock_c_name") ...
The column's name in the database to store information about the local interface receiving the traffic from callee.
Default value is “callee_sock”.
Example 1.26. Set to_sock_column
parameter
... modparam("dialog", "to_sock_column", "to_sock_c_name") ...
The column's name in the database to store the dialogs' id information.
Default value is “hash_id”.
Example 1.27. Set dlg_id_column
parameter
... modparam("dialog", "dlg_id_column", "dlg_id_c_name") ...
The column's name in the database to store the dialogs' state information.
Default value is “state”.
The column's name in the database to store the dialogs' start time information.
Default value is “start_time”.
Example 1.29. Set start_time_column
parameter
... modparam("dialog", "start_time_column", "start_time_c_name") ...
The column's name in the database to store the dialogs' timeout.
Default value is “timeout”.
Example 1.30. Set timeout_column
parameter
... modparam("dialog", "timeout_column", "timeout_c_name") ...
The column's name in the database to store the dialogs' profiles.
Default value is “profiles”.
Example 1.31. Set profiles_column
parameter
... modparam("dialog", "profiles_column", "profiles_c_name") ...
The column's name in the database to store the dialogs' vars.
Default value is “vars”.
The column's name in the database to store the dialogs' script flags.
Default value is “script_flags”.
Example 1.33. Set sflags_column
parameter
... modparam("dialog", "sflags_column", "sflags_c_name") ...
The column's name in the database to store the dialogs' module flags.
Default value is “module_flags”.
Example 1.34. Set mflags_column
parameter
... modparam("dialog", "mflags_column", "mflags_c_name") ...
The column's name in the database to store the dialogs' flags.
Default value is “flags”.
List of names for profiles with values. Flag /b allows replicating dialogs over the bin interface. Before, all of them were replicated.
Default value is “empty”.
Example 1.36. Set profiles_with_value
parameter
... modparam("dialog", "profiles_with_value", "caller ; my_profile; share/s; repl/b;") ...
List of names for profiles without values. Flag /b allows replicating dialogs over the bin interface. Before, all of them were replicated.
Default value is “empty”.
Example 1.37. Set profiles_no_value
parameter
... modparam("dialog", "profiles_no_value", "inbound ; outbound ; shared/s; repl/b;") ...
Pushes dialog values, profiles and flags into the database along with other dialog state information (see db_mode 1 and 2).
Default value is “empty”.
Example 1.38. Set db_flush_vals_profiles
parameter
... modparam("dialog", "db_flush_vals_profiles", 1) ...
The number of dialogs that should be attempted to be deleted at the same time ( a single query ) from the DB back-end.
Default value is “1”.
Enables distributed dialog profiles and specifies the backend that should be used by the CacheDB interface.
Default value is “empty”.
Example 1.40. Set cachedb_url
parameter
... modparam("dialog", "cachedb_url", "redis://127.0.0.1:6379") ...
Specifies what prefix should be added to the profiles with value when they are inserted into CacheDB backed. This is only used when distributed profiles are enabled.
Default value is “dlg_val_”.
Example 1.41. Set profile_value_prefix
parameter
... modparam("dialog", "profile_value_prefix", "dlgv_") ...
Specifies what prefix should be added to the profiles without value when they are inserted into CacheDB backed. This is only used when distributed profiles are enabled.
Default value is “dlg_noval_”.
Example 1.42. Set profile_no_value_prefix
parameter
... modparam("dialog", "profile_no_value_prefix", "dlgnv_") ...
Specifies what prefix should be added to the entity that holds the profiles with value size in CacheDB backed. This is only used when distributed profiles are enabled.
Default value is “dlg_size_”.
Example 1.43. Set profile_size_prefix
parameter
... modparam("dialog", "profile_size_prefix", "dlgs_") ...
Specifies how long a dialog profile should be kept in the CacheDB until it expires. This is only used when distributed profiles are enabled.
Default value is “86400”.
Registers the dialog module to the OpenSIPS Binary Internal Interface. It specifies the instances, that belong to a certain cluster, from which we should expect incoming packets.
Default value is 0 (not registered).
Example 1.45. Set accept_replicated_dialogs
parameter
... modparam("dialog", "accept_replicated_dialogs", 1) ...
Adds dialog replication destinations,that belong to the specified cluster id. The destination will receive all dialog-related events (creation, updating and deletion) over TCP, using the Binary Internal Interface.
Default value is “0” (no replication destinations).
Example 1.46. Set replicate_dialogs_to
parameter
... modparam("dialog", "replicate_dialogs_to", 1) ...
Registers the dialog module to the OpenSIPS Binary Internal Interface for profiles replication. It specifies the instances, that belong to a certain cluster, from which we should expect incoming packets.
Default value is 0 (not registered).
Example 1.47. Set accept_replicated_profiles
parameter
... modparam("dialog", "accept_replicated_profiles", 1) ...
Adds profiles replication destinations, that belong to the specified cluster id. The destination will receive all dialog-related events (creation, updating and deletion) over TCP, using the Binary Internal Interface.
Default value is “0” (no replication destinations).
Example 1.48. Set replicate_profiles_to
parameter
... modparam("dialog", "replicate_profiles_to", 1) ...
The time between two succesive incoming packets.
Default value is “10”.
Example 1.49. Set accept_replicated_profile_timeout
parameter
... modparam("dialog", "accept_replicated_profile_timeout", 30) ...
Authentication check for incoming packets.
Default value is “0” (disabled).
Used to specify the length of the buffer used by the binary replication, in bytes. Usually this should be big enough to hold as much data as possible, but small enough to avoid UDP fragmentation. The recommended value is the smallest MTU between all the replication instances.
Default value is 1400 bytes.
Example 1.51. Set replicate_profiles_buffer
parameter
... modparam("dialog", "replicate_profiles_buffer", 500) ...
Timer in seconds, used to specify how often the module should check whether old, replicated profiles values are obsolete and should be removed. should replicate its profiles to the other instances.
Default value is 10 s.
Example 1.52. Set replicate_profiles_check
parameter
... modparam("dialog", "replicate_profiles_check", 100) ...
Timer in milliseconds, used to specify how often the module should replicate its profiles to the other instances.
Default value is 10 ms.
Example 1.53. Set replicate_profiles_timer
parameter
... modparam("dialog", "replicate_profiles_timer", 100) ...
Timer in seconds, used to specify when the profiles counters received from a different instance should no longer be taken into account. This is used to prevent obsolete values, in case an instance stops replicating its counters.
Default value is 10 s.
Example 1.54. Set replicate_profiles_expire
parameter
... modparam("dialog", "replicate_profiles_expire", 10) ...
The function creats the dialog for the currently processed request. The request must be an initial request. Optionally,the function also receives a string parameter, which specifies whether the dialog end-points should be pinged via SIP options messages. The parameter can be "P" to specify to only ping the caller, "p" to only ping the callee or "Pp" to ping both dialog sides. If the extra string parameter is provided and one end-point fails to respond to a options ping, OpenSIPS will terminate the dialog from the middle. Also, the end-points can be pinged via in-dialog Re-INVITE SIP messages. This behaviour is controlled via the "R" flags for pinging the caller side, and the "r" flag for re-invite pinging the callee side. If one end-points fails to re-negociate the session via the Re-INVITE pings, OpenSIPS will terminate the dialog from the middle The string parameter can also contain "B" to activate the bye on timeout behavior.
The function returns true if the dialog was successfully created or if the dialog was previously created.
This function can be used from REQUEST_ROUTE.
Example 1.55. create_dialog()
usage
... create_dialog(); ... #ping caller create_dialog("P"); ... #ping caller and callee create_dialog("Pp"); #bye on timeout create_dialog("B"); ...
This function is to be used to match a sequential (in-dialog) request to an ongoing dialog.
By default, the function tries to use (for dialog matching) the DID (Dialog ID) from Route header and also falls back to SIP-wise matching. This behavior may be changed by providing it with a given matching mode string (see dlg_match_mode for possible values of the parameter).
As sequential requests are automatically matched to the dialog when doing "loose_route()" from script, this function is intended to: (A) control the place in your script where the dialog matching is done and (B) to cope with bogus sequential requests that do not have Route headers, so they are not handled by loose_route().
The function returns true if a dialog exists for the request.
This function can be used from REQUEST_ROUTE.
Example 1.56. match_dialog()
usage
... if (has_totag()) { loose_route(); # example 1: attempt dialog ID matching, followed by SIP-wise matching if ($DLG_status == NULL && !match_dialog()) xlog("cannot match request to a dialog\n"); # example 2: override the default behavior; only do dialog ID matching if ($DLG_status == NULL && !match_dialog("DID_ONLY")) xlog("cannot match request to a dialog\n"); } ...
The function checks the current received requests against the dialog (internal data) it belongs to. Performing several tests, the function will help to detect the bogus injected in-dialog requests (like malicious BYEs).
The performed tests are related to CSEQ sequence checking and routing information checking (contact and route set).
The function returns true if a dialog exists for the request and if the request is valid (according to dialog data). If the request is invalid, the following return codes are returned :
-1 - invalid cseq
-2 - invalid remote target
-3 - invalid route set
-4 - other errors ( parsing, no dlg, etc )
This function can be used from REQUEST_ROUTE.
Example 1.57. validate_dialog()
usage
... if (has_totag()) { loose_route(); if ($DLG_status!=NULL && !validate_dialog() ) { xlog(" in-dialog bogus request \n"); } else { xlog(" in-dialog valid request - $DLG_dir !\n"); } } ...
The function forces an in dialog SIP message to contain the ruri, route headers and dst_uri, as specified by the internal data of the dialog it belongs to. The function will prevent the existence of bogus injected in-dialog requests ( like malicious BYEs )
This function can be used from REQUEST_ROUTE.
Example 1.58. fix_route_dialog()
usage
... if (has_totag()) { loose_route(); if ($DLG_status!=NULL) if (!validate_dialog()) fix_route_dialog(); } ...
The function extracts a dialog value from another dialog. It first searches through all existing (ongoing) dialogs for a dialog that has a dialog variable named "key" with the value "key_val" (so a dialog where $dlg_val(key)=="key_val"). If found, it returns the value of the dialog variable "attr" from the found dialog in the "var" pseudo-variable, otherwise nothing is written in "var", and a negative error code is returned.
NOTE: the function does not require to be called in the context of a dialog - you can use it whenever / whereever for searching for other dialogs.
Meaning of the parameters is as follows:
attr - the name of the dialog variable (from the found dialog) to be returned;
var - a pvar where to store the value of the "attr" dialog variable
key - name of a dialog variable to be used a search key (when looking after the target dialog)
key_val - the value of the dialog variable that is used as key in searching the target dialog.
This function can be used from REQUEST_ROUTE, BRANCH_ROUTE, REPLY_ROUTE, FAILURE_ROUTE and LOCAL_ROUTE.
Example 1.59. get_dialog_info
usage
... if ( get_dialog_info("callee","$var(x)","caller","$fu") ) { xlog("caller $fU has another ongoing, talking to callee $var(x)\n") } # create dialog for current call and place the caller and callee attributes create_dialog(); $dlg_val(caller) = $fu; $dlg_val(callee) = $ru; ...
The function fetches all the dialog variables of another dialog. It first searches through all existing (ongoing) dialogs based on the given SIP CallID. If found, it returns all the dialog variables as two parallel arrays of names and values (using the given variables "names" and "vals"). As these variables have to hold arrays, they must be AVPs.
NOTE: the function does not require to be called in the context of a dialog - you can use it whenever / whereever for searching for other dialogs.
Meaning of the parameters is as follows:
names - the name of an AVP variable to hold all the names of the variables from the found dialog.
vals - the name of an AVP variable to hold all the values of the variables from the found dialog.
callid - the callid of a dialog to be searched (and have the variables fetched).
This function can be used from any type of route.
Example 1.60. get_dialog_vals
usage
... if ( get_dialog_vals("$avp(d_names)","$avp(d_vals)","$var(callid)") ) { xlog("the call $var(callid) has the variables:\n); $var(i) = 0; while ( $(avp(d_names)[$var(i)])!=NULL ) { xlog("var $var(i) is $(avp(d_names)[$var(i)])='$(avp(d_vals)[$var(i)])'\n"); $var(i) = $var(i) + 1; } } ...
Inserts the current dialog into a profile. Note that if the profile does not support values, this will be silently discarded. A dialog may be inserted in the same profile multiple times.
NOTE: the dialog must be created before using this function (use create_dialog() function before).
Meaning of the parameters is as follows:
profile - name of the profile to be added to;
value (optional) - string value to define the belonging of the dialog to the profile - note that the profile must support values. Pseudo-variables are supported.
This function can be used from REQUEST_ROUTE, BRANCH_ROUTE, REPLY_ROUTE and FAILURE_ROUTE.
Example 1.61. set_dlg_profile
usage
... set_dlg_profile("inbound_call"); set_dlg_profile("caller","$fu"); ...
Removes the current dialog from a profile.
NOTE: the dialog must be created before using this function (use create_dialog() function before).
Meaning of the parameters is as follows:
profile - name of the profile to be removed from;
value (optional) - string value to define the belonging of the dialog to the profile - note that the profile must support values. Pseudo-variables are supported.
This function can be used from REQUEST_ROUTE, BRANCH_ROUTE, REPLY_ROUTE and FAILURE_ROUTE.
Example 1.62. unset_dlg_profile
usage
... unset_dlg_profile("inbound_call"); unset_dlg_profile("caller","$fu"); ...
Checks if the current dialog belongs to a profile. If the profile supports values, the check can be reinforced to take into account a specific value - if the dialog was inserted into the profile for a specific value. If no value is passed, only simply belonging of the dialog to the profile is checked. Note that if the profile does not support values, this will be silently discarded.
NOTE: the dialog must be created before using this function (use create_dialog() function before).
Meaning of the parameters is as follows:
profile - name of the profile to be checked against;
value (optional) - string value to toughen the check. Pseudo-variables are supported.
This function can be used from REQUEST_ROUTE, BRANCH_ROUTE, REPLY_ROUTE and FAILURE_ROUTE.
Example 1.63. is_in_profile
usage
... if (is_in_profile("inbound_call")) { log("this request belongs to a inbound call\n"); } ... if (is_in_profile("caller","XX")) { log("this request belongs to a call of user XX\n"); } ...
Returns the number of dialogs belonging to a profile. If the profile supports values, the check can be reinforced to take into account a specific value - how many dialogs were inserted into the profile with a specific value. If not value is passed, only simply belonging of the dialog to the profile is checked. Note that the profile does not supports values, this will be silently discarded.
Meaning of the parameters is as follows:
profile - name of the profile to get the size for;
value (optional) - string value to toughen the check. Pseudo-variables are supported;
size - an AVP or script variable to return the profile size in.
This function can be used from REQUEST_ROUTE, BRANCH_ROUTE, REPLY_ROUTE and FAILURE_ROUTE.
Example 1.64. get_profile_size
usage
modparam("dialog", "profiles_no_value", "inboundCalls") modparam("dialog", "profiles_with_value", "caller") ... get_profile_size("inboundCalls",,"$var(size)"); xlog("inboundCalls: $var(size)\n"); ... get_profile_size("caller", "$fu", "$var(size)"); xlog("currently, the user $fu has $var(size) active outgoing calls\n"); ...
Sets the dialog flag index idx to true. The dialog flags are dialog persistent and they can be accessed (set and test) for all requests belonging to the dialog.
The flag index can be between 0 and 31.
NOTE: the dialog must be created before using this function (use create_dialog() function before).
This function can be used from REQUEST_ROUTE, BRANCH_ROUTE, REPLY_ROUTE and FAILURE_ROUTE.
Atomically checks if the dialog flag index idx is equal to value. If true, changes the value with the opposite one. This operation is done under the dialog lock.
The flag index can be between 0 and 31.
The value should be 0 (false) or 1 (true).
NOTE: the dialog must be created before using this function (use create_dialog() function before).
This function can be used from REQUEST_ROUTE, BRANCH_ROUTE, REPLY_ROUTE and FAILURE_ROUTE.
Resets the dialog flag index idx to false. The dialog flags are dialog persistent and they can be accessed (set and test) for all requests belonging to the dialog.
The flag index can be between 0 and 31.
NOTE: the dialog must be created before using this function (use create_dialog() function before).
This function can be used from REQUEST_ROUTE, BRANCH_ROUTE, REPLY_ROUTE and FAILURE_ROUTE.
Returns true if the dialog flag index idx is set. The dialog flags are dialog persistent and they can be accessed (set and test) for all requests belonging to the dialog.
The flag index can be between 0 and 31.
NOTE: the dialog must be created before using this function (use create_dialog() function before).
This function can be used from REQUEST_ROUTE, BRANCH_ROUTE, REPLY_ROUTE and FAILURE_ROUTE.
Example 1.68. is_dlg_flag_set
usage
... if (is_dlg_flag_set("16")) { xlog("dialog flag 16 is set\n"); } ...
Attaches to the dialog the value val under the name name. The values attached to dialogs are dialog persistent and they can be accessed (read and write) for all requests belonging to the dialog.
Parameter val may contain pseudo-variables.
NOTE: the dialog must be created before using this function (use create_dialog() function before).
Same functionality may be obtain by assigning a value to pseudo variable $dlg_val(name).
This function can be used from REQUEST_ROUTE, BRANCH_ROUTE, REPLY_ROUTE and FAILURE_ROUTE.
Example 1.69. store_dlg_value
usage
... store_dlg_value("inv_src_ip","$si"); store_dlg_value("account type","prepaid"); # or $dlg_val(account_type) = "prepaid"; ...
Fetches from the dialog the value of attribute named name. The values attached to dialogs are dialog persistent and they can be accessed (read and write) for all requests belonging to the dialog.
Parameter pvar may be a script var ($var) or and avp ($avp).
NOTE: the dialog must be created before using this function (use create_dialog() function before).
Same functionality may be obtain by reading the pseudo variable $dlg_val(name).
This function can be used from REQUEST_ROUTE, BRANCH_ROUTE, REPLY_ROUTE and FAILURE_ROUTE.
Example 1.70. fetch_dlg_value
usage
... fetch_dlg_value("inv_src_ip","$avp(2)"); fetch_dlg_value("account type","$var(account)"); # or $var(account) = $dlg_val(account_type); ...
Returns the total number of processed dialogs (terminated, expired or active) from the startup.
Returns the number of failed dialogs ( dialogs were never established due to whatever reasons - internal error, negative reply, cancelled, etc )
Returns the number of replicated dialog create requests send to other OpenSIPS instances.
Returns the number of replicated dialog update requests send to other OpenSIPS instances.
Returns the number of replicated dialog delete requests send to other OpenSIPS instances.
Returns the number of dialog create events received from other OpenSIPS instances.
Returns the number of dialog update events received from other OpenSIPS instances.
Lists the description of the dialogs (calls). If no parameter is given, all dialogs will be listed. If a dialog identifier is passed as parameter (callid and fromtag), only that dialog will be listed. If a index and conter parameter is passed, it will list only a number of "counter" dialogs starting with index (as offset) - this is used to get only section of dialogs.
Name: dlg_list
Parameters (with dialog idetification):
callid (optional) - callid if a single dialog to be listed.
from_tag (optional, but cannot be present without the callid parameter) - fromtag (as per initial request) of the dialog to be listed. entry
Parameters (with dialog counting):
index - offset where the dialog listing should start.
counter - how many dialogs should be listed (starting from the offset)
MI FIFO Command Format:
## list all ongoing dialogs opensipsctl fifo dlg_list ## list the dialog by callid and From TAG opensipsctl fifo dlg_list abcdrssfrs122444@192.168.1.1 AAdfeEFF33 ## list 10 dialogs, starting from the position 40 ## (in the list of all ongoing dialogs) opensipsctl fifo dlg_list 40 10
The same as the “dlg_list” but including in the dialog description the associated context from modules sitting on top of the dialog module. This function also prints the dialog's values. In case of binary values, the non-printable chars are represented in hex (e.g. \x00)
Name: dlg_list_ctx
Parameters: see “dlg_list”
MI FIFO Command Format:
opensipsctl fifo dlg_list_ctx
Terminates an ongoing dialog. If dialog is established, BYEs are sent in both directions. If dialog is in unconfirmed or early state, a CANCEL will be sent to the callee side, that will trigger a 487 from the callee, which, when relayed, will also end the dialog on the caller's side.
Name: dlg_end_dlg
Parameters are:
dialog_id - this is an identifier of the dialog - it can be either (1) the numerical unique ID of the dialog (as provided by dlg_list), either (2) the SIP Call-ID of the dialog.
extra_hdrs - (optional) string containg the extra headers (full format) to be added to the BYE requests.
The "dialog_id" value can be get via the "dlg_list" MI command.
MI FIFO Command Format:
# terminate the dialog via the internal Dialog-ID opensipsctl fifo dlg_end_dlg 1391569858236 # terminate the dialog via its SIP Call-ID opensipsctl fifo dlg_end_dlg Y2IwYjQ2YmE2ZDg5MWVkNDNkZGIwZjAzNGM1ZDY
Returns the number of dialogs belonging to a profile. If the profile supports values, the check can be reinforced to take into account a specific value - how many dialogs were inserted into the profile with a specific value. If not value is passed, only simply belonging of the dialog to the profile is checked. Note that the profile does not supports values, this will be silently discarded.
Name: profile_get_size
Parameters:
profile - name of the profile to get the value for.
value (optional)- string value to toughen the check;
MI FIFO Command Format:
opensipsctl fifo profile_get_size inbound_calls
Lists all the dialogs belonging to a profile. If the profile supports values, the check can be reinforced to take into account a specific value - list only the dialogs that were inserted into the profile with that specific value. If not value is passed, all dialogs belonging to the profile will be listed. Note that the profile does not supports values, this will be silently discarded. Also, when using shared profiles using the CacheDB interface, this command will only display the local dialogs.
Name: profile_list_dlgs
Parameters:
profile - name of the profile to list the dialog for.
value (optional)- string value to toughen the check;
MI FIFO Command Format:
opensipsctl fifo profile_list_dlgs inbound_calls
Lists all the values belonging to a profile along with their count. If the profile does not support values a total count will be returned. Note that this function does not work for shared profiles over the CacheDB interface.
Name: profile_get_values
Parameters:
profile - name of the profile to list the dialog for.
MI FIFO Command Format:
opensipsctl fifo profile_get_values inbound_calls
Terminate all ongoing dialogs from a specified profile, on a single dialog it performs the same operations as the command dlg_end_dlg
Name: profile_end_dlgs
Parameters:
profile - name of the profile that will have its dialogs termianted
value - (optional) if the profile supports values terminate only the dialogs with the specified value
MI FIFO Command Format:
opensipsctl fifo profile_end_dlgs inbound_calls
Will synchronize the information about the dialogs from the database with the OpenSIPS internal memory. To be used mainly for transferring OpenSIPS dialog information from one server to another.
Name: dlg_db_sync
It takes no parameters
MI FIFO Command Format:
opensipsctl fifo dlg_db_sync
Restores the dialog table after a potential desynchronization event. The table is truncated, then populated with CONFIRMED dialogs from memory.
Name: dlg_restore_db
It takes no parameters
MI FIFO Command Format:
opensipsctl fifo dlg_restore_db
Returns the status of the dialog corresponding to the processed sequential request. This PV will be available only for sequential requests, after doing loose_route().
Value may be:
NULL - Dialog not found.
1 - Dialog unconfirmed (created but no reply received at all)
2 - Dialog in early state (created provisional reply received, but no final reply received yet)
3 - Confirmed by a final reply but no ACK received yet.
4 - Confirmed by a final reply and ACK received.
5 - Dialog ended.
Returns the duration (in seconds) of the dialog corresponding to the processed sequential request. The duration is calculated from the dialog confirmation and the current moment. This PV will be available only for sequential requests, after doing loose_route().
NULL will be returned if there is no dialog for the request.
Returns the dialog flags array (as a single integer value) of the dialog corresponding to the processed sequential request. This PV will be available only for sequential requests, after doing loose_route().
NULL will be returned if there is no dialog for the request.
Returns the direction of the request in dialog (as "UPSTREAM" or "DOWNSTREAM" string) - to be used for sequential request. This PV will be available only for sequential requests (on replies), after doing loose_route().
NULL will be returned if there is no dialog for the request.
Returns the id of the dialog corresponding to the processed sequential request. The output format is entry ':' id (as returned by the dlg_list MI function). This PV will be available only for sequential requests, after doing loose_route().
NULL will be returned if there is no dialog for the request.
Returns the reason for the dialog termination. It can be one of the following :
Upstream BYE - Callee has sent a BYE
Downstream BYE - Caller has sent a BYE
Lifetime Timeout - Dialog lifetime expired
MI Termination - Dialog ended via the MI interface
Ping Timeout - Dialog ended because no reply to in-dialog pings
RTPProxy Timeout - Media timeout signaled by RTPProxy
NULL will be returned if there is no dialog for the request, or if the dialog is not ended in the current context.
Used to set the dialog lifetime (in seconds). When read, the variable returns the number of seconds until the dialog expires and is destroyed. Note that reading the variable is only possible after the dialog is created (for initial requests) or after doing loose_route() (for sequential requests). Important notice: using this variable with a REALTIME db_mode is very inefficient, because every time the dialog value is changed, a database update is done.
NULL will be returned if there is no dialog for the request, otherwise the number of seconds until the dialog expiration.
This event is raised when the dialog state is changed.
Parameters:
hash_entry - the entry in the dialog table. This is used, along with the hash_id, to uniquely identify the dialog.
hash_id - the id in the dialog table. This is used, along with the hash_entry, to uniquely identify the dialog.
old_state - the old state of the dialog.
new_state - the new state of the dialog.
Register a new callback to the dialog.
Meaning of the parameters is as follows:
struct dlg_cell* dlg - dialog to register callback to. If maybe NULL only for DLG_CREATED callback type, which is not a per dialog type.
int type - types of callbacks; more types may be register for the same callback function; only DLG_CREATED must be register alone. Possible types:
DLGCB_LOADED
DLGCB_SAVED
DLG_CREATED - called when a new dialog is created - it's a global type (not associated to any dialog)
DLG_FAILED - called when the dialog was negatively replied (non-2xx) - it's a per dialog type.
DLG_CONFIRMED - called when the dialog is confirmed (2xx replied) - it's a per dialog type.
DLG_REQ_WITHIN - called when the dialog matches a sequential request - it's a per dialog type.
DLG_TERMINATED - called when the dialog is terminated via BYE - it's a per dialog type.
DLG_EXPIRED - called when the dialog expires without receiving a BYE - it's a per dialog type.
DLGCB_EARLY - called when the dialog is created in an early state (18x replied) - it's a per dialog type.
DLGCB_RESPONSE_FWDED - called when the dialog matches a reply to the initial INVITE request - it's a per dialog type.
DLGCB_RESPONSE_WITHIN - called when the dialog matches a reply to a subsequent in dialog request - it's a per dialog type.
DLGCB_MI_CONTEXT - called when the mi dlg_list_ctx command is invoked - it's a per dialog type.
DLGCB_DESTROY
dialog_cb cb - callback function to be called. Prototype is: “void (dialog_cb) (struct dlg_cell* dlg, int type, struct dlg_cb_params * params); ”
void *param - parameter to be passed to the callback function.
param_free callback_param_free - callback function to be called to free the param. Prototype is: “void (param_free_cb) (void *param);”
3.1. | What happened with “topology_hiding()” function? |
The respective functionality was moved into the topology_hiding module. Function prototype has remained the same. | |
3.2. | What happened with “use_tight_match” parameter? |
The parameter was removed with version 1.3 as the option of tight matching became mandatory and not configurable. Now, the tight matching is done all the time (when using DID matching). | |
3.3. | What happened with “bye_on_timeout_flag” parameter? |
The parameter was removed in a dialog module parameter restructuring. To keep the bye on timeout behavior, you need to provide a "B" string parameter to the create_dialog() function. | |
3.4. | What happened with “dlg_flag” parameter? |
The parameter is considered obsolete. The only way to create a dialog is to call the create_dialog() function | |
3.5. | Where can I find more about OpenSIPS? |
Take a look at http://www.opensips.org/. | |
3.6. | Where can I post a question about this module? |
First at all check if your question was already answered on one of our mailing lists:
E-mails regarding any stable OpenSIPS release should be sent to
If you want to keep the mail private, send it to
| |
3.7. | How can I report a bug? |
Please follow the guidelines provided at: https://github.com/OpenSIPS/opensips/issues. |
Table 4.1. Top contributors by DevScore(1), authored commits(2) and lines added/removed(3)
Name | DevScore | Commits | Lines ++ | Lines -- | |
---|---|---|---|---|---|
1. | Bogdan-Andrei Iancu (@bogdan-iancu) | 389 | 244 | 11725 | 2921 |
2. | Vlad Paiu (@vladpaiu) | 236 | 134 | 6171 | 2950 |
3. | Razvan Crainea (@razvancrainea) | 129 | 96 | 2672 | 634 |
4. | Liviu Chircu (@liviuchircu) | 80 | 53 | 2066 | 527 |
5. | Ovidiu Sas (@ovidiusas) | 27 | 21 | 482 | 107 |
6. | Dan Pascu (@danpascu) | 26 | 22 | 160 | 106 |
7. | Eseanu Marius Cristian (@eseanucristian) | 19 | 6 | 722 | 341 |
8. | Daniel-Constantin Mierla (@miconda) | 16 | 13 | 76 | 66 |
9. | Henning Westerholt (@henningw) | 16 | 10 | 172 | 187 |
10. | Anca Vamanu | 16 | 7 | 749 | 116 |
All remaining contributors: Vlad Patrascu (@rvlad-patrascu), Ionut Ionita (@ionutrazvanionita), Andrei Dragus, Ionel Cerghit (@ionel-cerghit), Walter Doekes (@wdoekes), John Riordan, Hugues Mitonneau, Carsten Bock, Jerome Martin, Klaus Darilion, Jarrod Baumann (@jarrodb), Michel Bensoussan, Richard Revels, Elena-Ramona Modroiu, Tavis Paquette, Andrei Datcu (@andrei-datcu), Jeffrey Magder, Ron Winacott, Andy Pyles, Julián Moreno Patiño, Konstantin Bokarius, Alex Massover, Damien Sandras (@dsandras), Alex Hermann, Dusan Klinec, Norman Brandinger (@NormB), UnixDev, Eliot Gable, Ryan Bullock (@rrb3942), Nick Altmann (@nikbyte), Edson Gellert Schubert.
(1) DevScore = author_commits + author_lines_added / (project_lines_added / project_commits) + author_lines_deleted / (project_lines_deleted / project_commits)
(2) including any documentation-related commits, excluding merge commits. Regarding imported patches/code, we do our best to count the work on behalf of the proper owner, as per the "fix_authors" and "mod_renames" arrays in opensips/doc/build-contrib.sh. If you identify any patches/commits which do not get properly attributed to you, please submit a pull request which extends "fix_authors" and/or "mod_renames".
(3) ignoring whitespace edits, renamed files and auto-generated files
Table 4.2. Most recently active contributors(1) to this module
Name | Commit Activity | |
---|---|---|
1. | Razvan Crainea (@razvancrainea) | Aug 2010 - Oct 2018 |
2. | Liviu Chircu (@liviuchircu) | Aug 2012 - Oct 2018 |
3. | Vlad Patrascu (@rvlad-patrascu) | Jul 2016 - Aug 2018 |
4. | Bogdan-Andrei Iancu (@bogdan-iancu) | Apr 2006 - Jun 2018 |
5. | Ovidiu Sas (@ovidiusas) | Feb 2008 - Mar 2017 |
6. | Ionel Cerghit (@ionel-cerghit) | Jul 2015 - Dec 2016 |
7. | Vlad Paiu (@vladpaiu) | Oct 2010 - Aug 2016 |
8. | Jarrod Baumann (@jarrodb) | Apr 2015 - Apr 2016 |
9. | Ionut Ionita (@ionutrazvanionita) | Oct 2014 - Feb 2016 |
10. | Julián Moreno Patiño | Feb 2016 - Feb 2016 |
All remaining contributors: Dusan Klinec, Walter Doekes (@wdoekes), Eseanu Marius Cristian (@eseanucristian), Andrei Datcu (@andrei-datcu), Nick Altmann (@nikbyte), Norman Brandinger (@NormB), Damien Sandras (@dsandras), Ryan Bullock (@rrb3942), Anca Vamanu, Alex Massover, Andrei Dragus, John Riordan, Hugues Mitonneau, Richard Revels, UnixDev, Dan Pascu (@danpascu), Alex Hermann, Henning Westerholt (@henningw), Carsten Bock, Klaus Darilion, Daniel-Constantin Mierla (@miconda), Konstantin Bokarius, Edson Gellert Schubert, Jerome Martin, Tavis Paquette, Michel Bensoussan, Eliot Gable, Andy Pyles, Elena-Ramona Modroiu, Jeffrey Magder, Ron Winacott.
(1) including any documentation-related commits, excluding merge commits
Last edited by: Liviu Chircu (@liviuchircu), Bogdan-Andrei Iancu (@bogdan-iancu), Razvan Crainea (@razvancrainea), Julián Moreno Patiño, Ionut Ionita (@ionutrazvanionita), Vlad Paiu (@vladpaiu), Ionel Cerghit (@ionel-cerghit), Walter Doekes (@wdoekes), Eseanu Marius Cristian (@eseanucristian), Norman Brandinger (@NormB), Anca Vamanu, Andrei Dragus, Hugues Mitonneau, Klaus Darilion, Henning Westerholt (@henningw), Ovidiu Sas (@ovidiusas), Daniel-Constantin Mierla (@miconda), Konstantin Bokarius, Edson Gellert Schubert, Dan Pascu (@danpascu), Michel Bensoussan, Andy Pyles, Elena-Ramona Modroiu.
doc copyrights:
Copyright © 2006-2009 Voice Sistem SRL